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Abstract

A free-by-cyclic group can often be viewed as a mapping torus of a free group
automorphism (monodromy) in multiple ways. What dynamical properties must these
monodromies share, and to what extent are they invariant under quasi-isometries?
We give a new proof using cyclic splittings that the growth type of a monodromy is
a geometric invariant of the free-by-cyclic group; we also characterise the degree of
polynomial growth using slender splittings. For exponential growth, we conjecture
that the nesting of attracting laminations is a geometric invariant.

These notes are expanded from a minicourse I taught at CRM-Montréal in May 2023. The
minicourse consisted of three lectures that covered: dynamics of free group automorphisms
(Section 2); group invariance of growth type (Section 3); and geometric invariance of growth
type (Sections 4 and 5). We have included some new results, proofs of folklore statements,
and new proofs of published results.

1 Introduction

A group is free-by-cyclic if it has a free normal subgroup whose quotient group is cyclic; we
will insist the free subgroup is finitely generated and not trivial and the quotient is infinite.
In the last two sections, we will also assume the free subgroup is not cyclic to rule out, for
convenience, the fundamental group of a torus or Klein bottle.

Rephrasing the definition, a free-by-cyclic group G fits in a short exact sequence

1—->F—G—Z — 1, where F is finitely generated free and not trivial.

Since Z is free, the short exact sequence splits, and G = F x¢ Z for some automorphism
®: F — F that is well-defined up to composition with an inner automorphism of F. There
are of course plenty of things one can say about G; we focus on how the dynamics of the
outer automorphism ¢ = [®] relate to the algebraic and geometric properties of G.
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This is particularly interesting when G has two finitely generated normal free subgroups
F # F’ with cyclic quotients, and we get an isomorphism Fx¢7Z = F' xyZ. What dynamical
properties must the outer automorphisms ¢ and ¢ = [¥] have in common?

Question 1. Generally, what must ¢, have in common if G 2 F x4 Z is quasi-isometric
to G’ = ' xy Z? (See Section 4 for a definition of quasi-isometry.)

Our main result states that the two outer automorphisms must share growth type.
Corollary 4.7. If G,G’ are quasi-isometric and ¢ is polynomially growing, then so is 1.

It is then an older theorem of Natasa Macura that they must also share their degrees
of growth deg(vy) = deg(¢) (Theorem 4.8). Polynomial growth and degree are defined in
Section 2. The corollary was recently proven using relative hyperbolicity (Theorem 5.2),
while our proof uses cyclic splittings. Along the way, we give a very short proof that growth
type is a group invariant (Theorem 3.2). The previously known proof of group invariance
through relative hyperbolicty was a bit overkill.

We have included characterisations and observations that may be known to experts but
do not explicitly appear elsewhere; here are three such observations.

Lemma 3.5. If G' < G is a free-by-cyclic subgroup, then G' N is finitely generated.

It also follows from the proof, which uses Feighn-Handel’s coherence result [FH99, Prop. 2.3],
that “free-by-cyclic subgroups” of G are exactly the “finitely generated noncyclic subgroups
with Euler characteristic 0.

Lemma 4.1. Free-by-cyclic subgroups of G are undistorted.
Lemma 4.2. Slender subgroups of G are undistorted.

A finitely generated subgroup of G is undistorted if the inclusion is a q.i.-embedding; for
instance, F is distorted in G when ¢ is exponentially growing or polynomially growing with
degree at least 2. A group is slender if every subgroup is finitely generated; for example,
finitely generated abelian groups are slender. Slender subgroups of F are cyclic, and slender
subgroups of G are cyclic or Z x Z. We also consider splittings of G over slender subgroups
and the depths of slender hierarchies for G as defined in Section 3.

Lemma 3.1. IfF is not cyclic, then slender (resp. cyclic) splittings of G are naturally in
one-to-one correspondence with ¢-fized cyclic (resp. free) splittings of F.

This correspondence allows us to give an algebraic characterisation of deg(¢) when G
is polynomial, i.e. ¢ is polynomially growing.

Corollary 3.3. deg(¢) is the minimal depth of slender hierarchies for polynomial G.

With the hope of turning this characterisation into a geometric invariant, we suspect
that (certain) slender splittings of G are preserved by quasi-isometries.



Question 2. Suppose G,G’ are quasi-isometric. Must a slender splitting of G induce a
slender splitting of G'?

Panos Papasoglu affirmatively answered the question for certain canonical cyclic split-
tings (Theorem 4.4); this is the key to our proof of Corollary 4.7. When G is also the
fundamental group of a 3-manifold, then Kapovich-Leeb affirmatively answer the question
for geometric splittings [KL97, Thm. 1.1].

Using Lemma 3.5 and a proposition of Gilbert Levitt (Proposition 2.6), we give an alge-
braic characterisation of the polynomial part of a free-by-cyclic group. The characterisation
also follows from Lemma 4.1 and relative hyperbolicity.

Proposition 3.6. There is a unique (up to conjugacy) finite set P(G) of pairwise non-
conjugate mazximal polynomial free-by-cyclic subgroups of G

Bestvina-Feighn—Handel [BFH00, §3] define the partially ordered finite set AT (¢) of
attracting laminations for ¢. Define the lamination depth 9(¢) to be the size of the longest
chains in A*(¢). So ¢ is polynomially growing if and only if 9(¢) = 0.

Conjecture 5.5. If G,G’ are quasi-isometric, then 9(¢) = 0(1)).

It is open whether the lamination depth is even a group invariant! This conjecture is
closely related to our previous conjecture that being both fully irreducible and atoroidal
was a geometric invariant — see the discussion at the end of Section 5.

Acknowledgements. I thank: Genevieve Walsh for organizing the workshop/conference
and inviting me to give a minicourse; Monika Kudlinska for graciously being the TA; and
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2 Polynomial growth

Throughout, F denotes a finitely generated nontrivial free group, ®: F — F an automor-
phism, and ¢ = [®] its outer class.

A simplicial tree is a simply connected 1-dimensional cell complex (equivalently, a con-
tractible graph). A splitting of a group is a simplicial tree with a minimal nontrivial
simplicial action of the group. We allow groups to act with inversions on edges, and we
assume vertices are branch points (i.e. not bivalent). A cyclic splitting is splitting whose
edge (setwise) stabilisers are cyclic; it is a free splitting if the edge stabilisers are trivial.
A free splitting of F is absolute if vertex stabilisers are trivial — this means the action is
free, but we introduce “absolute” to avoid the phrase “free free splittings” later.

Let T be an absolute free splitting of F. For x € F, the T-length ||z||7 is the minimal
distance x translates a point in 7. A conjugacy class [z] grows exponentially on (forward)

¢-iteration if lim inf ||<I)"(a:)||;/ " > 1; it grows polynomially on ¢-iteration if the sequence
n—

(I2™(x)||7)2, is bounded above by a polynomial in n — the smallest degree of such a



polynomial is the degree for [z]. These properties (grows exp./poly. & lim-inf/degree) are
mutually exclusive and independent of the absolute free splitting 7. For the interested
reader, Levitt [Lev09, §6] gives a finer classification of growth rates. The outer auto-
morphism ¢ is exponentially growing if some conjugacy class [z] grows exponentially on
¢-iteration; it is polynomially growing if every conjugacy class [z] grows polynomially on
¢-iteration.

A map g: T — T on a cyclic splitting of F is ®-equivariant if g(x - p) = ®(x) - g(p) for
allz € F,p € T. A cyclic splitting T of F is ¢-fixed if it admits a ®-equivariant simplicial
automorphism; such a simplicial automorphism is unique when F is not cyclic. Marc Culler
[Cul84, Thm. 2.1] proved our first characterisation of a dynamical property of ¢ in terms
of absolute free splittings:

Theorem 2.1. F has a ¢-fized absolute free splitting if and only if ¢ has finite order. [

By solving the Nielsen realisation problem for Out(F), Culler actually proved a stronger
theorem: & < Out(F) is finite if and only if F has a &-fixed absolute free splitting.
Bestvina—Handel [BH92, §1] generalised Theorem 2.1 to polynomial growth using the next
crucial observation:

Theorem 2.2. IfF has no ¢-fixed free splitting, then ¢ is exponentially growing.

Sketch. Bestvina—Handel [BH92, Thm. 1.7] prove that an irreducible outer automorphism
of F is represented by an irreducible train track map; the map is either expanding or
a homeomorphism. They [BH92, Rmk. 1.8] also prove that an outer automorphism is
exponentially growing if it is represented by an expanding irreducible train track map.
While they worked with connected finite graphs I' with m(G) = F, their argument
works almost verbatim for free splittings of F with ¢-invariant vertex stabilisers. In partic-
ular, some free splitting of F admits a ®-equivariant irreducible train track map; the map
is either expanding or a simplicial automorphism. As [F has no ¢-fixed free splitting, the
train track map is expanding, and the outer automorphism ¢ is exponentially growing. [J

Let T be a cyclic splitting of F. By Bass—Serre theory [Ser77, 1-§5.4], there are finitely
many orbits F - v; in T of vertices with nontrivial stabilisers. The conjugacy classes [S;]
of nontrivial vertex stabilisers are represented by finitely generated proper subgroups of [F;
the children of T are the representatives S;. Any ®-equivariant simplicial automorphism
g: T — T permutes the orbits F - v; of vertices with nontrivial stabilisers, the conjugacy
classes [S;] of the children are ¢-periodic, and the restrictions ¢; € Out(S;) are the outer
automorphisms induced by the first-return maps g;: F - v; — F - v; under g. The outer
automorphism ¢ is exponentially growing if some restriction ¢; is exponentially growing.

Now assume T is a ¢-fixed free splitting. So the children are proper free factors [F;.
Since they have smaller rank than F, we can induct on rank. By inductively considering
¢;-fixed free splittings of the children IF;, we get a ¢-fixed free hierarchy for F: a family tree
starting with F such that each terminal descendant F’ has a v-fixed absolute free splitting




or no -fixed free splitting, where ¢» € Out(F’) is the restriction of ¢. The depth of a
hierarchy is the length of the longest branches in the family tree. The free depth 6(¢) of ¢
is the minimal depth of ¢-fixed free hierarchies for F; for instance, d(¢) = 0 means F has
a ¢-fixed absolute free splitting or no ¢-fixed free splitting.

Similarly, a ¢-fixed cyclic hierarchy for F is a family tree that starts with F, consists
of descendants that are children of fixed cyclic splittings, and whose terminal descendants
have fixed absolute free splittings or no fixed cyclic splittings. A ¢-fixed cyclic hierarchy
for IF is complete if it has finite depth and its terminal descendants have fixed absolute free
splittings. The cyclic depth 0.(¢) of ¢ is the minimal depth of ¢-fixed cyclic hierarchies
for F; by definition, d.(¢) < §(9).

We use complete cyclic hierarchies for F to prove the dichotomy of growth type for ¢:

Proposition 2.3. The following are equivalent:

1. every ¢-fized free hierarchy for F is complete;
2. some ¢-fized cyclic hierarchy for F is complete;
3. ¢ is polynomially growing; and

4. @ 1s not exponentially growing.

Sketch. 1=2: F has at least one ¢-fixed free hierarchy.

2=-3: Suppose F has a complete ¢-fixed cyclic hierarchy with depth d, and let g: T"— T
be the initial ®-equivariant simplicial automorphism of a cyclic splitting that produced the
hierarchy. Without loss of generality, assume F acts on T" without inversion (allow bivalent
vertices if necessary), and g transitively permutes the F-orbits of edges in T'. For the base
case, T' is absolute. So, the length of every edge-path in T is preserved on g-iteration.
In the quotient graph I' = F\T, every edge-path grows polynomially on g-iteration with
degree 0 = d, where g: I' — T is the simplicial automorphism induced by g.

For induction, assume F; are the children of T, I'; are connected finite graphs with
m (1) = Fi, gi: Iy — T'; are cellular maps representing ¢;, and every edge-path in I
grows polynomially (rel. endpoints) with degree < d on g;-iteration. We focus on the
case T is not a free splitting — the free splitting case is similar (and simpler). Let Z be
a “blow up” of F\T rel. T';: for each vertex v; in I, we have the graph I';; and for each
edge €;; in I', we have a cylinder S x [0,1] whose boundary components are attached to
I'; and I'; along loops representing the conjugacy classes in [F; and F; corresponding to the
stabiliser of the edge e;; in T'. So, Z is a connected finite 2-complex with 71 (Z) = F. The
self-maps g and g; induce a cellular map h: Z — Z that represents ¢. The restrictions of
some iterate of h to the cylinders are homotopic to Dehn twists; therefore, every edge-path
in the 1-skeleton Z() grows polynomially with degree < d on h-iteration. Consequently,
if I is a graph with m (I') 2 F and ¢': T” — I is cellular map representing ¢, then every
edge-path in I grows polynomially with degree < d on ¢'-iteration. By induction, the
conjugacy class [x] grows polynomially with degree < d on ¢-iteration for all z € F.



3=-4: Polynomial functions are subexponential.

4=-1: For a slightly more general statement, suppose some ¢-fixed cyclic hierarchy for [F
with finite depth is not complete. So some terminal descendant F/ < TF has no -fixed cyclic
splitting, where ¢ € Out(F’) is the restriction of ¢. Then v, and hence ¢, is exponentially
growing by Theorem 2.2. O

Let ¢ be polynomially growing. The proof also shows that the degree for [z] is at
most d.(¢) for all x € F; define the degree deg(¢) of ¢ to be the maximum such degree. A ¢-
fixed cyclic splitting of IF is simplifying if it determines restrictions ¢; with deg(¢;) < deg(¢).
The next strengthening of Theorem 2.2 is due to Bestvina—Feighn—Handel [BFHO05, §4]:

Theorem 2.4. F has a simplifying ¢-fixed cyclic splitting when ¢ is polynomially growing.

Sketch. If deg(¢) = 0, then ¢ has finite order and, by Theorem 2.1, F has a ¢-fixed
absolute free splitting. If deg(¢) = 1, then the ¢-fixed cyclic splitting in [BFHO05, Lem. 4.37]
determines finite order restrictions ¢;. Finally, if deg(¢) > 2, then the ¢-fixed free splitting
in [BFHO5, Lem. 4.33] determines restrictions ¢; with deg(¢;) < deg(¢). O

As a corollary, growth type and degree are invariant under inverses:

Corollary 2.5. Generally, §(¢~1) = 6(¢) and 6.(¢~1) = 6.(¢).
If ¢ is polynomially growing, then so is ¢~', and deg(¢™') = deg(¢) = d.(¢).

Proof. Let T be a free splitting of F and g: T — T a ®-equivariant simplicial automor-
phism. Then the inverse g~': T — T is a ®~'-equivariant simplicial automorphism; thus T’
is also ¢~ '-fixed. So ¢-fixed free hierarchies for F are exactly the ¢~!-fixed free hierarchies,
and §(¢p~!) = §(¢). Similarly, ¢-fixed cyclic hierarchies for F are exactly the ¢~!-fixed
cyclic hierarchies, and 6.(¢~1) = 6.(¢).

In particular, if ¢ is polynomially growing, so is ¢~! by Proposition 2.3(2&3). We
already know deg(¢) < d.(¢). By inductively invoking Theorem 2.4, we get a ¢-fixed cyclic
hierarchy for F whose depth is at most deg(¢®). So deg(¢) = d.(9). O

When ¢ is exponentially growing, Levitt [Lev09, Prop. 1.4] remarkably showed that the
polynomially growing conjugacy classes are supported in a unique subgroup system:

Proposition 2.6. There is a finite set P(¢) of pairwise nonconjugate nontrivial subgroups
of F satisfying the following for any nontrivial x € F:

if x is conjugate to an element of a subgroup in P(¢p), then [x] grows polynomi-
ally on ¢-iteration; otherwise, [x] grows exponentially on ¢-iteration.

Each P € P(¢) is finitely generated. Essentially distinct conjugates of P1,Py € P(o)
have trivial intersection. Any nontrivial subgroup of F consisting entirely of elements whose
conjugacy classes in F grow polynomially on ¢-iteration is conjugate to a subgroup of some
P € P(¢); therefore, the set P(¢) is unique (up to conjugacy).



Conjugates gllP1gl_1,gglP’2g2_1 are essentially distinct if Py # Py or 92_191 ¢ Py = Py. The
set P(¢) can be empty, and P(¢) = {F} if and only if ¢ is polynomially growing.

Sketch. Suppose ¢ is exponentially growing. A sort of converse to Theorem 2.2 states that
there is a minimal nontrivial isometric F-action on an R-tree T" with trivial arc stabilisers,
and the R-tree T' admits a ®-equivariant expanding homothety. By Gaboriau—Levitt’s
index theory [GL95, Thm.III.2], nontrivial point stabilisers have smaller rank than F and
are partitioned into finitely many conjugacy classes permuted by ¢; moreover, if x € F does
not fix a point in 7', then [z] grows exponentially on ¢-iteration. As the F-action on 7" has
trivial arc stabilisers, nontrivial point stabilisers of distinct points have trivial intersection.

Each child S; of T (i.e. a nontrivial point stabiliser representing a conjugacy class)
has the restriction ¢; € Out(S;). By inductively considering children with exponentially
growing restrictions, we get a finite family tree whose terminal descendants P € P(¢) do
not have exponentially growing restrictions. So the restriction ¢; to each P; € P(¢) is
polynomially growing by Proposition 2.3(4=-3), and the conjugacy classes in P; grow poly-
nomially on ¢;-iteration. In particular, the conjugacy class [z] (in F) grows polynomially
on ¢-iteration if z is conjugate to an element in P;.

For uniqueness of P(¢), suppose a nontrivial subgroup P’ < F consists entirely of
elements whose conjugacy classes in F grow polynomially on ¢-iteration. By construction
of the family tree, P is conjugate to a subgroup of some unique terminal descendant. [

As a corollary, we get the growth type dichotomy for conjugacy classes: [z] grows
polynomially on ¢-iteration if and only if it does not grow exponentially on ¢-iteration. By
uniqueness, the outer automorphism ¢ permutes the conjugacy classes of the subgroups
in P(¢). Each P; € P(¢) has the polynomially growing restriction ¢; € Out(P;) induced
by the first-return map under ¢. By Corollary 2.5 and uniqueness, P(¢~!) = P(¢).

We end the section by showing that the growth type and degree are inherited by proper
powers and restrictions to finite index subgroups. Suppose F’ < F is a finite index subgroup.
Then ¥ = ®F|F’ is an automorphism of F’ for some k& > 1. Let ¢ = [¥] be the outer
automorphism in Out(F’).

Lemma 2.7. For n > 1, ¢"™ is polynomially growing if and only if ¢ is polynomially
growing. The restriction 1 is polynomially growing if and only if ¢ is polynomially growing;
moreover, deg(y) = deg(¢) = deg(¢™) for n > 1 when ¢ is polynomially growing.

As a corollary, P(¢") = P(¢) for all n # 0.

Proof. For x € F, if the conjugacy class [z] grows polynomially growing on ¢-iteration
with degree d, then it is immediate from the definition that [x] grows polynomially on
@"-iteration with degree d for n > 1. So, for n > 1, ¢" is polynomially growing with
deg(¢™) = deg(¢) if ¢ is polynomially growing. Similarly, if [x] grows exponentially on ¢-
iteration, then it also grows exponentially on ¢"-iteration for n > 1; thus ¢" is exponentially
growing if ¢ is exponentially growing.



Pick an absolute free splitting T' of FF; restricting this action to F’ gives us an absolute
free splitting 77 of F'. Then ||2'||7» = ||2||r for 2’ € F, and the conjugacy class [2/]p (in F')
grows polynomially on t-iteration with degree d if and only if the conjugacy class [2/]p
(in F) grows polynomially on ¢*-iteration with degree d. For this reason, ¢ is exponen-
tially growing if 1 is exponentially growing. Conversely, if ¥ is polynomially growing and
xz € F, then 2™ € F’ for some m > 1, and the conjugacy class [z™]r (and hence [z]F)
grows polynomially on ¢*-iteration with the same degree as [¢z™]p grows on 1-iteration;
therefore, ¢* is polynomially growing, and deg(¢*) = deg(v). O

3 Group invariance

Thoughout, G denotes the free-by-cyclic group F x¢ Z. Our goal is to characterise the
growth type of ¢ as an algebraic property of G.

Convention. G has the relative presentation (F,t | tzt~! = ®(x) for all z € F).

A cyclic splitting of G is absolute if its vertex stabilisers are cyclic. A Z-splitting
of a group is a cyclic splitting whose edge stabilisers are infinite; we say a group “splits
over 7 if it has a Z-splitting. The children of a splitting of G are the representatives of
conjugacy classes of noncyclic vertex stabilisers. A Z-hierarchy for G is a family tree that
starts with G, consists of descendants that are children of Z-splittings, and terminates on
descendants that have absolute Z-splittings or no Z-splittings. The Z-depth §7(G) of G is
the minimal depth of Z-hierarchies for G. As defined, the existence of Z-hierarchies for G
implicitly invokes the axiom of countable choice, and it is not clear that d7(G) is finite.
Lemma 3.1 below will allow us to bypass these concerns.

A slender splitting of a group is a splitting whose edge stabilisers are slender. A
slender hierarchy for G is a family tree that starts with G, consists of descendants that
are children of slender splittings, and terminates on descendants that have absolute cyclic
splittings or no slender splittings. A slender hierarchy for G is complete if it has finite depth
and its terminal descendants have absolute cyclic splittings. The slender depth §5(G) of G
is the minimal depth of slender hierarchies for G.

Lemma 3.1. IfF is not cyclic, then slender (resp. cyclic) splittings of G are naturally in
one-to-one correspondence with ¢-fized cyclic (resp. free) splittings of F.

A variation of this appears in the proof of [KK00, Cor.15]. The same variation is also
proven in the second paragraph of [Bri02, §1].

Proof. Suppose T is a ¢-fixed cyclic splitting of F. As F is not cyclic, a unique simplicial
automorphism g: T' — T is $-equivariant, which is precisely the property needed to extend
the F-action on T' to a G-action by t - p = g(p) for p € T' — this is the unique G-action
extending the F-action on 7T'. For any edge e of T' with F-stabiliser (y), an iterate of g fixes
the orbit F - e, and the G-stabiliser of e is (y, zt") for some x € F. If y is not trivial, then
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(y, xt™) = (y) x (zt") by P-equivariance of g; otherwise, (y,zt™) = Z. So T is a slender
splitting of G, and it is a Z-splitting of G if T" was a free splitting of F.

Conversely, suppose T is a slender splitting of G. As F is not cyclic, F < G acts
nontrivially and minimally on 7', and the action on T by t € G is ®-equivariant. So T is
a ¢-fixed slender (hence cyclic) splitting of F. Now suppose T" was a cyclic splitting of G.
Since F is finitely generated, T' has finitely many F-orbits of edges. For any edge e of T
with a nontrivial F-stabiliser (y), a power t" fixes the orbit I - e, and the G-stabiliser of e
has the noncyclic subgroup (y,zt™) for some z € F and n > 1 — yet T is a cyclic splitting
of G! So T is a ¢-fixed free splitting of F. O

Suppose F is cyclic, i.e. G =2 Z x Z. A noncyclic torsion-free group with a free splitting
will contain a noncyclic free subgroup. As G is virtually abelian, it has no free splittings.
So any cyclic splitting of G is a Z-splitting. Since I is cyclic, it has a unique cyclic splitting,
and this is an absolute free splitting; however, G has infinitely many (resp. exactly two)
slender splittings if ®: F — F is the identity (resp. the involution), and they are all absolute
Z-splittings. In this case, G has a unique Z-hierarchy, and this hierarchy is complete.

Now suppose F is not cyclic. It follows from the proof of Lemma 3.1 that any slender
splitting of G has infinite edge stabilisers, and its children are free-by-cyclic subgroups.
Thus, by Lemma 3.1, slender hierarchies (resp. Z-hierarchies) for G are naturally in one-
to-one correspondence with ¢-fixed cyclic (resp. free) hierarchies for F. In particular, every
Z-hierarchy for G has finite depth, and a slender hierarchy for G is complete exactly when
it corresponds to a complete ¢-fixed cyclic hierarchy for F. With the previous paragraph,
Proposition 2.3 translates into an algebraic characterisation of growth type:

Theorem 3.2. The following are equivalent:
1. every Z-hierarchy for G is complete;
2. some slender hierarchy for G is complete; and
3. ¢ is polynomially growing. ]

G is polynomial if the conditions of the theorem hold. The one-to-one correspondences
of hierarchies imply 67(G) = §(¢) and 05(G) = d.(¢). By Corollary 2.5, we get an algebraic
characterisation of the degree:

Corollary 3.3. §,(G) = deg(¢) when G is polynomial. O

This characterisation of deg(¢) may be known to experts but is not stated in the literature.

Suppose G’ < G is a finite index subgroup. Then F/ = G’ N'F has finite index in TF;
in particular, it is finitely generated. As G’ is not a subgroup of F, it is generated by F’
and zt" for some x € Fand n > 1. So G’ = F' xg Z is a free-by-cyclic group, where
U: ' — F be given by 2’ — z®"(2')z~!. An immediate consequence of Lemma 2.7 and
group invariance of the degree (Corollary 3.3) is commensurability invariance:



Corollary 3.4. Let G' < G be a finite index subgroup. G’ is polynomial if and only if G
is polynomial; 6s(G') = §5(G) when G is polynomial. O

The identities 07(G) = 6z(G’) and 65(G’) = 05(G) probably always hold — this might follow
from the algebraic torus theorem [DS00] (see also Question 2 and Corollary 4.6).

We now turn the subgroup system P(¢) into a group invariant of G. Each P; € P(¢)
representing a ¢-orbit of conjugacy classes determines a polynomial free-by-cyclic subgroup
G; =P; xg, Z of G, where ®;: P; — P; represents the polynomially growing restriction ¢;;
denote the set of subgroups G; by P(G). As before, P(G) can be empty, and P(G) = {G}
if and only if G is polynomial. Our goal is to give an algebraic characterisation of P(G).

First, here is a remarkable property of free-by-cyclic subgroups in G:

Lemma 3.5. If G' < G is a free-by-cyclic subgroup, then G' N is finitely generated.

This lemma was the key idea in [Mut21, Thm. 4.3]. It is indispensable for turning algebraic
statements about G into dynamical statements about ¢. Despite its importance, it is not
widely known. A minor variation is stated in the paragraph following [HW10, Thm. A].

Proof. Let m: G — Z be the homomorphism that maps F + 0 and ¢ — 1. Then F/ = G'NF
is the kernel of the restriction 7|G’. By our definition of free-by-cyclic groups, G’ is a finitely
generated noncyclic subgroup with Euler characteristic x(G’) = 0; thus G’ is generated
by F' and s = xt" for some x € F and n > 1. In proving the coherence of G = F x¢ Z,
Feighn-Handel [FH99, Prop. 2.3] show that G’ has the relative presentation

(F" s | sas™! = x®"(a)z~" for all a € A),

where A is a free factor of a finitely generated subgroup F” < F’ such that z®"(A)z~! < F”.
This presentation is aspherical and allows us to compute: 0 = x(G’) = rank(A) — rank(F");
therefore, A = F”. Since 7|G’ maps F” — 0 and s — n and its kernel F’ is free, we have
2@ (F")z~! = F” — otherwise, if 2®"(F”)x~! # F”, then the kernel is (locally free but)
not free. In particular, F' = ker(mw|G’) = F” is finitely generated. O

We are now ready to give the characterisation:

Proposition 3.6. P(G) is the unique (up to conjugacy) set of pairwise nonconjugate
mazimal polynomial free-by-cyclic subgroups of G.

As the first step of the proof, we show P(G) is malnormal in G: essentially distinct conju-
gates of G1, G2 € P(G) have trivial intersection. Another proof is given after Theorem 5.2.

Proof. We reconstruct P(G) along the same lines we constructed P(¢) in Proposition 2.6.
Suppose G is not polynomial. Then there is a minimal isometric F-action on an R-tree T’
with trivial arc stabilisers, and the R-tree T admits a ®-equivariant expanding homothety.
As in the proof of Lemma 3.1, we can use the expanding ®-equivariant homothety to define
the unique homothetic G-action on 7" that extends the isometric F-action.
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Define a child H; of T' (for the G-action) to be a noncyclic point stabiliser representing
a conjugacy class. Such a child is a free-by-cyclic subgroup H; = S; x4, Z, where S; is child
of T' (for the F-action) representing a ¢-orbit of conjugacy classes in F. So the collection H
of the children of T' (for the G-action) is finite too. Since expanding homotheties have at
most one fixed point, the G-action on T still has trivial arc stabilisers. In particular, H is
malnormal in G. By inductively considering nonpolynomial children, we get a malnormal
family tree whose collection of terminal descendants is P(G). Malnormality is transitive;
therefore, P(G) is malnormal in G.

Let G’ < G be a free-by-cyclic subgroup. By Lemma 3.5, F/ = G’ N F is finitely gener-
ated, and G’ is generated by F’ and s € G. In particular, G’ = ' xg Z, where ¥: F' — F’
represents a restriction ¢ € Out(F’) of ¢ € Out(F). If G’ is polynomial, then the conjugacy
class [2']p (in F’) grows polynomially on 1)-iteration for all ' € F’. This implies [2/]r grows
polynomially on ¢"-iteration, and hence, also on ¢-iteration. By Proposition 2.6, F’ is a
subgroup of some (conjugate in F of) P; € P(¢). Then s normalises P; by malnormality
of P(¢) in F, and G’ = (F, s) is a subgroup of (P;,s) < G; € P(G). So P(G) must be the
collection of maximal polynomial free-by-cyclic subgroups of G by malnormality in G. O

We end the section by introducing a canonical Z-hierarchy that realises the Z-depth.
Let T, T’ be Z-splittings of G. T' dominates T” if every T-point stabiliser fixes a point in 7".
Two Z-splittings of G are equivalent if they dominate each other; domination induces a
partial order on the equivalence classes. Note that equivalent Z-splittings have the same
children. Analogous to JSJ-decompositions for 3-manifolds, Rips—Sela [RS97, Thm. 7.1]
defined a canonical equivalence class of Z-splittings:

Theorem 3.7. Some Z-splitting of G dominates all Z-splittings of G if F is not cyclic. [

If G =2 ZXZ (ie. F is cyclic), then G has a unique Z-hierarchy, which we call the
canonical Z-hierarchy for G. Otherwise, define the (canonical) Z-children of G to be the
children of the maximal equivalence class of Z-splittings of G. By inductively considering
the canonical Z-descendants, we get the canonical Z-hierarchy for G.

Corollary 3.8. The depth of the canonical Z-hierarchy for G is 0z(G).

Proof. Let dcan(G) be the depth of the canonical Z-hierarchy for G. We may assume F
is not cyclic and, by Theorem 3.7, §7(G) > 1. We need to show dcan(G) < d7(G). Pick
a Z-splitting T" of G that initiates a Z-hierarchy for G with minimal depth dz(G). Then
children of 7" have Z-depth < 07(G). By domination (Theorem 3.7), each Z-child S; of G
is (conjugate to) a subgroup of some child §/;, of 7". If we can show that dcan(S;) < 0z(S},)
for each Z-child S;, then dcan(G) < dz(G) since z(S],) < 9z(G).

We proceed by induction on the Z-depth. For the base case, let 6Z(S;-i) =0. If Sgi
has an absolute Z-splitting TJ{Z,, then S; acting on its minimal subtree in T]’-i is an absolute
Z-splitting and 6can(S;) = 0. If S;-i does not split over Z, then it must be a subgroup of a
Z-child of G; in fact, S;-i =S; and d¢an(S;) = 0.
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Now assume dz(S’;,) > 0 and: if a Z-child S of a free-by-cyclic group G’ is a subgroup of
a child §' of a Z-splitting of G’ with dz(S") < 6z(S],), then decan(S) < 0z(S},). Let T}, be a
Z-splitting of S;-i that initiates a Z-hierarchy with minimal depth 5Z(S;-i ). Then the children
of T]’Z have Z-depth < 52(83-1,). If S; is a subgroup of a child of Tj{i, then dcan(S;) < 52(8}2,) by
the induction hypothesis. Otherwise, the minimal subtree 7" C T of S; is a Z-splitting.
The Z-children of S; are subgroups of children of 7” (Theorem 3.7), which are in turn
subgroups of children of T]’Z By the induction hypothesis again, the Z-children of S; have
canonical Z-hierarchies with depth < 0z(S};,), and dcan(Si) < 0z(S})). O

4 Geometric invariance

Throughout, F’ denotes a finitely generated noncyclic free group, ¥: F/ — F’ an automor-
phism, 1) = [¥] its outer class, and G’ the free-by-cyclic group F' xy Z. We also assume G
is not virtually abelian, i.e. F is not cyclic.

The Cayley graph Cay(H, S) of a group H with respect to a finite generating set S C H
is a graph whose O-skeleton is H and 1-cells connect g,gs € H for all (g,s) € Hx S. A
function f: I' — I"” on connected locally finite graphs is a quasi-isometric (q.i.) embedding
if there is a constant K > 1 such that

%d(m,pz) — K <d'(f(p1), f(p2)) < Kd(p1,p2) + K for all py,pa €T,

where d,d’ are the combinatorial metrics on I',T” respectively; f is a quasi-isometry if,
additionally, I is the K-neighbourhood of the image f(T"). Quasi-isometries determine an
equivalence relation on connected locally finite graphs. For any two finite generating sets
S1,S2 C H, the identity map on H extends to a quasi-isometry Cay(H, S;) — Cay(H, S2);
thus, Cay(H) is well-defined up to quasi-isometry. A finitely generated subgroup H' < H is
undistorted if the inclusion extends to a q.i.-embedding Cay(H') — Cay(H); for instance,
if H' < H has finite index, then H' acts (by left multiplication) freely and cocompactly
on Cay(H), and the inclusion H' < H extends to a quasi-isometry.

Here is our second surprising property of free-by-cyclic subgroups in G:

Lemma 4.1. Free-by-cyclic subgroups of G are undistorted.

Proof. To prove the lemma, it suffices to show that the free-by-cyclic subgroup G’ < G
is undistorted in a finite index subgroup of G. Lemma 3.5 states that G’ N F is finitely
generated, and we may assume F' = G’ N F. In particular, ¢p € Out(FF’) is a restriction
of an iterate of ¢ € Out(F). After replacing G with a finite index subgroup if necessary,
we may assume 1) is a restriction of ¢, and G’ is generated by F' and t (i.e. ¥ = ®|F').
By Hall’s theorem, F’ is a free factor of a finite index subgroup of F (see [Sta83, §6]);
we may replace F with the intersection of the ®-iterates of the finite index subgroup and
assume F’ < I is a free factor. Pick a basis B’ of F/ and extend it to a basis B of F. We
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will show that the inclusion of Cay(G') = Cay(G’, B’ U{t}) into Cay(G) = Cay(G, B U{t})
is a q.i.-embedding by defining a map r: Cay(G) — Cay(G’) that is a Lipschitz retract.
Note that Cay(F') = Cay(F',B’) is a subtree of Cay(F) = Cay(F,B) and the closest
point projection s: Cay(F) — Cay(F’) is 1-Lipschitz. Define r on the ¢"-translates of
Cay(F) c Cay(G) by setting r(t" - p) = t" - s(p) for all p € Cay(F),n € Z. For each
remaining 1-cell e of Cay(G), let » map e linearly to an arbitrary shortest path in Cay(G")
connecting the r-images of its endpoints. The restriction | Cay(G’) is the identity map.
We now exhibit a uniform diameter for the r-image of any 1-cell in Cay(F). This is
immediate for 1-cells in " - Cay(F) for n € Z since s is 1-Lipschitz. Consider the 1-cell e
connecting t"'®(x) = t"zt~! and t"x, where + € F. We need a uniform bound on the
distance in Cay(G’) between r (" 1®(z)) = " 1s(®(x)) and r(t"z) = t"s(x). The latter is
adjacent to t"~1®(s(z)), and it is enough to give a uniform bound on the distance in Cay (F')
between s(®(z)) and ®(s(x)). Set y = @ 1(s(®(x))) € F’ and consider the shortest
path [z,y] in Cay(F) between x,y. Then s(x) € [z, y] and ®(y) = s(®(z)) € [®(z), P(s(x))]
by definition of s. Bounded cancellation [Coo87, p. 454] states that some uniform constant,
independent of € F, bounds the distance in Cay(F) between ®(s(x)) and [®(x), s(®(x))],
which is also the distance in Cay(F’) between ®(s(z)) and s(®(z)). O

By a very similar argument, the lemma extends to cyclic subgroups.
Lemma 4.2. Slender subgroups of G are undistorted.
A variation of this appears in [Mit98, §3].

Proof. Any subgroup Z x Z < G is undistorted by Lemma 4.1. First, suppose (¢) < G
is not a subgroup of F. After replacing G with the finite index subgroup generated by F
and ¢, we may assume ¢ = t. Then (c) is a section of the homomorphism G — Z that maps
F to 0 and ¢ to 1; thus (¢) < G is undistorted. Now suppose (c¢) < F is not trivial. If the
conjugacy class [c] (in F) is ¢-periodic, then (c¢) < Z? < G. By Lemma 4.1 again, Z%2 < G
is undistorted. All subgroups of Z? are undistorted, and hence {c) < G is undistorted.
We may assume the conjugacy class [c] strictly grows on ¢*'-iteration. Fix a basis for IF;
for nontrivial z € F, let a(x) C Cay(FF) denote the axis for = in the Cayley tree. Consider
C = Upezt" - a(®7"(c)) in Cay(G). Make C connected by including, for each vertex
t"*tlz € O, the edge connecting it to t"®(z) and the shortest path in ¢*-Cay(F) from t"®(x)
to C'; by bounded cancellation, the length of the latter paths are uniformly bounded. Let
sn: Cay(F) — a(®7"(c)) be the closest point projections, and define r: Cay(G) — C by
setting 7(t"-p) = t"-s,(p) for all p € Cay(F),n € Z and extending linearly on the remaining
edges. As in the previous proof, C is undistorted in Cay(G) if there is a uniform bound
on the distance in Cay(F) between s,,(®(z)) and ®(s,41(x)) for x € F, which follows from
bounded cancellation again. Since [c] strictly grows on ¢*!-iteration, a(c) is quasiconvex
in C; therefore, (¢) < G is undistorted. O]
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A property of connected locally finite graphs is a geometric invariant if it is preserved by
quasi-isometries; for instance, being one-ended — that is, the complement of any bounded
set has exactly one unbounded component — is a geometric invariant. Our goal in this
section is to relate growth type of ¢ with a geometric invariant of Cay(G)!

A connected subgraph ¢ C Cay(G) is a quasi-geodesic if there is a q.i.-embedding
q: Cay(Z) — Cay(G) whose image is in ¢ and has a finite neighbourhood (i.e. the (closed)
M-neighbourhood Njs(¢) for some M > 0) containing ¢; a component of Cay(G) \ ¢ is
essential if its union with ¢ is one-ended. A quasi-geodesic ¢ (strongly) separates Cay(G)
if Cay(G) \ ¢ has at least two essential components and a function D: R>g — Rx>q such
that if £ > 0 and C' is a component of Cay(G) \ Ng(f) that is not in Npgy(£), then C' is
not in any finite neighbourhood of ¢, and ¢ is in Npg)(C). The existence of a separating
quasi-geodesic is a geometric invariant:

Lemma 4.3. If f: Cay(G) — Cay(G’) is a quasi-isometry and { a quasi-geodesic separat-
ing Cay(G), then some finite neighbourhood of f({) is a quasi-geodesic separating Cay(G’).

This is stated in [Pap05, Lem. 1.7] but with a weaker notion of separating; however, that
statement with its weaker condition is false. The stronger notion is due to Papasoglu too.
Note that the cited lemma dealt with quasi-lines, but quasi-geodesics will do for G thanks
to Lemma 4.2.

Sketch. Let K > 1 be the g¢.i.-constant for f. Then the K-neighbourhood Ng(f(¢)) is
connected. Let ¢: Cay(Z) — Cay(G) be a q.i.-embedding whose image is in ¢ and has a
finite neighbourhood containing ¢. Then f o ¢ is a q.i.-embedding whose image is in f(¢)
and has a finite neighbourhood containing N (f(¢)). So ¢ = Nk (f(¢)) is a quasi-geodesic.

Suppose /¢ is separating with corresponding function D: R>g — R>g. For E' > 0,
set D'(E') = max(E'K? + 6K® + K2 + K,D(E'K + 4K?)K + 2K). Let C' be a com-
ponent of Cay(G’) \ Np/(¢') that is not in Np/(g)(¢). Then some component C” of
C'\ Npgoqris sk 42k (f(£)) is not in Npprgqar2yk+x (f(€)). The preimage f~(C")
is in a component C' of Cay(G) \ Ng g yax>(¢) but not in Npg/g1ax2)(£). So C is not in
any finite neighbourhood of ¢, and ¢ is in ND(E/K+4K2)(C)- Finally, f maps C into the
component C" of Cay(G’) \ N4k (f(¢)); thus C” is not in any finite neighbourhood of ¢,
and ¢ is in Npr g (C').

Let £ > 0 and C’ be a component of Cay(G’) \ Ng/(¢') that is not in any finite neigh-
bourhood of ¢'. For a contradiction, suppose that the complement in C’ U Ng/(¢') of some
connected compact subgraph K C C’ U Ng/(¢') has at least two unbounded components.
Replace K with a larger connected compact subgroup such that Ng/(¢') \ K has exactly
two components and they are unbounded, and (C' U Ng/(¢')) \ K has only unbounded
components. As Cay(G’) is one-ended, each component of (C' U Ng/(¢')) \ K contains
a component of Ng/(¢')\ K. So (C'U Ng/(¢')) \ K has exactly two unbounded compo-
nents C?;, and no finite neighbourhood of C’ or C” contains ¢. Pick R > 0 so that
Nprr(¢') contains K. Without loss of generality, some component of C’, \ Np/yr(¢') is
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a component of Cay(G’) \ Ngrr(¢) that is not in any finite neighbourhood of ¢'. By the
previous paragraph, ¢ is in some finite neighbourhood of C”, — a contradiction.

Let C1 # C5 be two essential components of Cay(G)\¢. For i = 1,2, some component C;*
of C; \ N3g1,ox3 512(¢) is not in any finite neighbourhood of ¢. So f maps C} into the
component C! of Cay(G’) \ N3gs ox240r(f(£)) that is not in any finite neighbourhood
of f(¢). For a contradiction, suppose C' = C] = C}. Then the preimage f~1(C’) is in a
component of Cay(G) \ Nk (¢). So C},C5 are in the same component of Cay(G) \ ¢, which
contradicts Cy # Cy; therefore, Cf # C% and N3gs ox2 ¢ (¢') is separating. O

The following is a deep theorem of Papasoglu [Pap05, Thm. 1]:
Theorem 4.4. Cay(G) has a separating quasi-geodesic if and only if G splits over Z. [

So splitting over Z is a geometric invariant of G! The cited theorem applies to more
general finitely presented groups. We have specialised and simplified all statements in
this section for our free-by-cyclic group G. We say G, G’ are quasi-isometric if their Cayley
graphs are quasi-isometric. The following conjecture motivates an extension of Theorem 4.4
to slender splittings.

Question 2. Suppose G,G’ are quasi-isometric. Must a slender splitting of G induce a
slender splitting of G'?

Papasoglu [Pap05, Thm. 7.1] affirmatively answers the question for the maximal (equiv-
alence class of) Z-splittings:

Theorem 4.5. If f: Cay(G) — Cay(G’) is a quasi-isometry and Gy a Z-child of G, then
f(Gy) is a finite Hausdorff distance from a Z-child of G'. O

Two subsets of a metric space are a finite Hausdorff distance apart if each subset is in the
finite neighbourhood of the other.

Corollary 4.6. If G,G’ are quasi-isometric, then 6z(G') = 0z(G); furthermore, if the
canonical Z-hierarchy for G is complete, then so is the canonical Z-hierarchy for G'.

Proof. By Theorem 4.5, G has a Z-child (i.e. §z(G) > 0 by Corollary 3.8) if and only if G/
does too. Thus the first part holds if 0z(G) = 0. Suppose dz(G) > 0 and the first part holds
for free-by-cyclic groups with Z-depth < 7(G). By Theorem 4.5 and Lemma 4.1, each
Z-child G; of G is quasi-isometric to a Z-child G}, of G', and dz(G;) < 0z(G). Similarly,
each Z-child G; of G’ is quasi-isometric to a Z-child Gi; of G. By the induction hypothesis,
02(Gi) = 6z(G})), 6z(G;) = 6z(Gy;) for all Z-children of G, G'; therefore, dz(G') = 0z(G).
For the second part of the theorem, assume the canonical Z-hierarchy for G is complete,
and set 6 = dz(G’) = dz(G). If § = 0, then both G,G’ have absolute Z-splittings by
Theorem 4.4 and Lemma 4.3, and the canonical Z-hierarchy for G’ is complete too. Suppose
6 > 0 and the second part holds for free-by-cyclic groups with Z-depth < . As above,
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each Z-child of G’ is quasi-isometric to a Z-child of G, and the latter are assumed to have
complete canonical Z-hierarchies. By the induction hypothesis, each Z-child of G’ has a
complete canonical Z-hierarchy and so does G’. O

By Theorem 3.2 and Corollary 4.6, growth type is a geometric invariant:
Corollary 4.7. If G,G’ are quasi-isometric and G is polynomial, then so is G'. L]

This also follows from Theorem 5.2 below. Macura [Mac02, Thm.1.2] gave a geometric
characterisation of the degree of a polynomially growing outer automorphism:

Theorem 4.8. A polynomial G has polynomial divergence with degree deg(¢) + 1. O

Roughly speaking, the divergence is a (collection of) function(s) that measures how
quickly geodesic rays diverge. The interested reader should refer to Stephen Gersten’s
paper [Ger94, §2], where divergence is introduced and noted to be a geometric invariant.
Recently, Mark Hagen [Hagl9, Thm. 1.2] ‘modernised’” Macura’s theorem by showing that
a polynomial G is strongly thick of order deg(¢). Thickness is a more structural property
(compared to divergence) that was introduced by Behrstock—Drutu—Mosher [BDM09, §7]
as an obstruction to relative hyperbolicity.

Alternatively, one could reprove the geometric invariance of the degree by showing:
05(G) is the depth of a canonical slender hierarchy for G; and this hierarchy is a geometric
invariant. Fujiwara—Papasoglu [FP06, Thm. 5.13] already developed a slender analogue of
Rips—Sela’s Theorem 3.7. We currently have no geometric characterisation of when G splits
over Z X Z, hence our Question 2.

5 Relative hyperbolicity

We finally address the geometry of free-by-cyclic groups that are not polynomial.

First, consider the extreme case when P(G) is empty, or equivalently, P(¢) is empty. By
Proposition 2.3, polynomially growing outer automorphisms of ' have periodic conjugacy
classes of nontrivial elements in F, e.g. nontrivial elements in terminal descendants of a
complete fixed free hierarchy; thus, P(¢) is empty if and only if ¢ is atoroidal: there are no
¢-periodic conjugacy classes of nontrivial elements in F. We remark that P(G) is empty if
and only if G has no free abelian subgroup of rank 2. Peter Brinkmann [Bri00, Thm. 1.1]
proved that the absence of Z? subgroups is a geometric invariant:

Theorem 5.1. The following are equivalent:
1. Cay(G) is hyperbolic;
2. G has no Z? subgroups; and

3. ¢ is atoroidal. ]
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A locally finite graph is hyperbolic if there is a § > 0 such that the é-neighbourhood of
the union of two sides of any geodesic triangle in the graph contains the third side of the
triangle; Misha Gromov [Gro87, Cor.2.3.E] introduced this geometric invariant. Gromov
also introduced relative hyperbolicity in [Gro87, §8.6] as a group property that generalises
lattices of negatively curved symmetric spaces.

Theorem 5.1 gives a geometric characterisation of when P(G) is empty. Recently, this
was generalised to the case when P(G) # {G}, i.e. G is not polynomial.

Theorem 5.2. The following are equivalent:

1. G is hyperbolic rel. P(G);
2. G is relatively hyperbolic;
3. G is not polynomial; and
4. @ 1s exponentially growing.

Cornelia Drutu [Dru09, Thm. 1.2] proved that relative hyperbolicity is a geometric invari-
ant! So this theorem gives another proof of Corollary 4.7.

Outline. (2=3) is essentially Macura’s Theorem 4.8 since it is folklore that relatively hy-
perbolic groups have exponential divergence. Alternatively, this is Hagen’s theorem since
thick groups cannot be relatively hyperbolic.

(4=1) was initially announced by Gautero—Lustig in 2007, but their proof was incom-
plete. Pritam Ghosh [Gho23, Cor.3.16] and Dahmani-Li [DL22, Thm. 0.4] recently gave
complete independent proofs. O

Another proof for Proposition 3.6. Suppose G is not polynomial. Then G is hyperbolic
rel. P(G) by Theorem 5.2(3=-1). As any free-by-cyclic subgroup is undistorted (Lemma 4.1),
G’ < G is relatively hyperbolic or conjugate into some subgroup in P(G) [DS05, Thm. 1.8].
By Theorem 5.2(2=3), if G’ < G is polynomial, then it is conjugate into some subgroup
in P(G). By malnormality of peripheral structures, P(G) is the collection of maximal
polynomial free-by-cyclic subgroups of G. O

Not only is P(G) a group invariant of G, it turns out to be a geometric invariant!
Behrstock—Drutu—Mosher [BDM09, Thm. 4.8] strengthened Drutu’s geometric invariance
theorem when the group is hyperbolic relative to non-(relatively hyperbolic) subgroups:

Theorem 5.3. If f: Cay(G) — Cay(G') is a quasi-isometry and P € P(G), then f(P) is
a finite Hausdorff distance from a conjugate of some P’ € P(G'). O

To conclude, we return to the extreme case when ¢ is atoroidal. The outer automor-
phism ¢ is fully irreducible if there are no ¢-periodic conjugacy classes of nontrivial proper
free factors of F. Using Lemma 3.5, we [Mut21, Thm.4.3] proved that being both fully
irreducible and atoroidal was a group (actually commensurability) invariant:
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Theorem 5.4. G has no infinite index free-by-cyclic subgroups if and only if ¢ is fully
1rreducible and atoroidal. O

In [Mut21, p. 48], we conjecture that being fully irreducible and atoroidal is a geometric
invariant, but it is not clear what the equivalent property of the Cayley graph would be. In
fact, we suspect something more general! Recall the definition of (lamination) depth 9(¢):
the length of the longest properly nested sequence(s) of attracting laminations for ¢.

Conjecture 5.5. If G,G’ are quasi-isometric, then 3(¢) = 0(1)).

The depth 0 case of the conjecture is precisely Corollary 4.7. For atoroidal outer
automorphisms, being fully irreducible may be equivalent to having depth 1 and no fixed
free splittings; thus, the depth 1 case of the conjecture may be equivalent to the geometric
invariance of being fully irreducible and atoroidal.
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