Finding Relative Immersions on Free Groups

Jean Pierre Mutanguha (MPIM, Bonn, Germany)

Topological representatives on free groups

Given an injective endomorphism $\phi: F_n \to F_n$, what is the best way to represent ϕ as a topological map?

Needed:

- a graph X,
- an isomorphism $\alpha: F_n \to \pi_1(X)$ (marking),
- a map $f: X \to X$ that induces $[\phi]$:

$$F_{n} \xrightarrow{\phi} F_{n}$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow^{\alpha}$$

$$\pi_{1}(X) \xrightarrow{f_{*}} \pi_{1}(X)$$

• can read $[\phi]$'s dynamics of f.

```
f: X \to X is a homotopy equivalence.
```

Is $f \simeq$ a homeomorphism?

 $f \simeq \text{graph symmetry if and only if } [\phi] \text{ has finite order.}$

(Culler, Khramtsov, Zimmermann)

 $f: X \to X$ is a homotopy equivalence and assume $[\phi]$ has infinite order.

Is $f \simeq$ a locally injective map (**immersion**)?

No: immersion $f \Longrightarrow \tilde{f}: \tilde{X} \to \tilde{X}$ injective surjective $\phi \Longrightarrow \tilde{f}$ simplicial homeomorphism $\Longrightarrow f$ is a homeomorphism.

```
f: X \to X is a homotopy equivalence and assume [\phi] has infinite order. What's the best we can hope for?
```

```
(Bestvina-Handel) f \simeq a relative train track \longrightarrow Scott conjecture (Bestvina-Feighn-Handel) f \simeq improved rel. train track \longrightarrow Tits alternative for \mathrm{Out}(F_n)
```

 $f: X \to X$ is a homotopy equivalence and assume $[\phi]$ has infinite order. What's the best we can hope for?

(Brinkmann) The following are equivalent:

- 1. $[\phi]$ is atoroidal;
- 2. $F_n \rtimes_{\phi} \mathbb{Z}$ is word-hyperbolic;
- 3. $F_n \rtimes_{\phi} \mathbb{Z}$ has no BS(1, n) subgroups;
- 4. $F_n \rtimes_{\phi} \mathbb{Z}$ has no \mathbb{Z}^2 subgroups.

Nonsurjective endomorphisms

```
f: X \to X is \pi_1-injective.
```

Is $f \simeq$ an improved relative train track? No!

Is $f \simeq$ a relative train track? Yes, but not enough!

Is $f \simeq$ an immersion? Most times!

(Reynolds) If ϕ is nonsurjective and irreducible, then $f \simeq$ a unique expanding local homothety.

Examples and non-examples

Examples:
$$n=1, \quad \phi: a \mapsto a^2$$

$$X=S^1$$

$$f= \text{degree 2 map}$$

$$n=2, \quad \phi: egin{cases} a\mapsto ab \\ b\mapsto ba \end{cases}$$
 $X= egin{cases} X=f = 0 \end{cases}, \ \alpha: egin{cases} a\mapsto [l] \\ b\mapsto [r] \end{cases}$

Non-examples:
$$n = 3$$
, $\phi : \begin{cases} a \mapsto b \\ b \mapsto ab \\ c \mapsto c^2 \end{cases}$

 $\phi|_{\langle a,b\rangle}:\langle a,b\rangle \to \langle a,b\rangle$ is an infinite order automorphism $\Longrightarrow f \not\simeq$ an immersion.

$$n=2, \quad \phi: \begin{cases} a\mapsto a \\ b\mapsto ab^2 \end{cases}$$

 $\phi|_{\langle a \rangle} : \langle a \rangle \to \langle a \rangle$ is an automorphism $\implies f \not\simeq$ an expanding immersion.

Other reasons $\Longrightarrow f \not\simeq$ an immersion.

My results

Theorem 1. (Mutanguha)

If ϕ is nonsurjective, then $f \simeq a$ relative expanding immersion.

$$n = 3, \quad \phi : \begin{cases} a \mapsto b & X : \langle a, b \rangle \\ b \mapsto ab \\ c \mapsto c^2 & f : \langle b, ba \rangle \end{cases} \qquad n = 2, \quad \phi : \begin{cases} a \mapsto a \\ b \mapsto ab^2 \end{cases} \qquad f : \langle a \rangle$$

Corollary. (M.) $f \simeq expanding immersion \iff [\phi]$ has no fixed proper free factor system.

Theorem 2. (M.)

 F_n*_{ϕ} is word-hyperbolic \iff it has no BS(1,n) subgroups.

Outer space and its spine

 $CV_n = \{(X, \alpha) \text{ marked metric graphs }\}/\sim$

Spine of $CV_n = CV_n / \sim'$ where we forget the metrics = vertices of a locally finite simplicial complex

The action on the spine

 $[\phi]$ an outer endomorphism $[X,\alpha]$ a marked graph in the spine

$$F_n \xrightarrow{\alpha'} \pi_1(X')$$

$$\phi \downarrow \qquad \qquad \downarrow i_* \text{ immersion}$$

$$F_n \xrightarrow{\alpha} \pi_1(X)$$

Set
$$[X, \alpha] \cdot [\phi] = [X', \alpha']$$

Lemma.

Fixed point in the spine $\iff f \simeq \text{immersion}$. Fixed point in outer space $\iff f \simeq \text{local homothety}$.

Sketch proof of Reynolds' theorem

(Reynolds) If ϕ is nonsurjective and irreducible, then its action on outer space has a unique fixed point.

- 1) Choose a marked graph $[X, \alpha]$ and iterate $[X, \alpha] \cdot [\phi]^n$
- 2) The sequence is eventually periodic (in the spine)
- 3) There's a fixed point next to the periodic points
- 4) ...

$$n = 2, \quad \phi : \begin{cases} a \mapsto ab \\ b \mapsto ba \end{cases}$$
$$X = \begin{cases} c \mapsto [l] \\ b \mapsto [r] \end{cases}$$

f = obvious map is an immersion

 $[X, \alpha]$ is a fixed point in the spine

Sketch proof of Reynolds' theorem

$$n = 2, \quad \phi : \begin{cases} a \mapsto ab \\ b \mapsto ba \end{cases}, \quad X = \begin{matrix} l \\ l \end{matrix}, \\ \alpha : \begin{cases} a \mapsto [l] \\ b \mapsto [lr] \end{cases} \quad \text{and} \quad f = \begin{cases} l \mapsto llr \\ r \mapsto \bar{r}\bar{l}rl \end{cases}$$

$$\begin{matrix} a \\ b \\ l \end{matrix}, \quad \begin{matrix} a \\ l \end{matrix}, \quad \begin{matrix} b \\ l \end{matrix}, \quad \begin{matrix} a \\ l \end{matrix}, \quad \begin{matrix} b \\ l \end{matrix}, \quad \begin{matrix} a \\ l \end{matrix}, \quad \begin{matrix} b \\ l \end{matrix}, \quad \begin{matrix} a \\ l \end{matrix}, \quad \begin{matrix} b \end{matrix}, \quad \begin{matrix} b \\ l \end{matrix}, \quad \begin{matrix} b \end{matrix}, \quad \end{matrix}, \quad \begin{matrix} b \end{matrix},$$

Sketch proof of Reynolds' theorem

$$n=2, \quad \phi: \begin{cases} a\mapsto ab \\ b\mapsto ba \end{cases}, \quad X=\stackrel{l}{\longleftarrow} \stackrel{r}{\longrightarrow} \stackrel{apply f}{\longleftarrow}$$

$$\alpha: \begin{cases} a\mapsto [l] \\ b\mapsto [\bar{l}r] \end{cases} \quad \text{and} \quad f= \begin{cases} l\mapsto r \\ r\mapsto r\bar{l}rl \end{cases}$$

$$\text{Same} \quad \text{marking} \quad \text{apply } f$$

$$\text{fold} \quad \text{fold} \quad \text{apply } f$$

How to use prove things for injective endomorphisms

- Step 1. Prove the result for automorphisms.
- Step 2. Prove the result for expanding immersions.
- Step 3. "Relativize" Step 2 to combine with Step 1 using relative expanding immersions.
- Step 4. Celebrate!

Thank you!