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Topological representatives on free groups

Given an injective endomorphism ¢ : F;,, — F),, what 1s

the best way to represent ¢ as a topological map?

Needed:
e a graph X,
e an isomorphism « : F,, — m(X) (marking),

e amap [ : X — X that induces [¢]:
¢

F, y F, .
commutes up to post-composition
al la . , .
with an inner automorphism
?'Tl(X) —>f* 7T1(X)

e can read [¢]’s dynamics of f.



Automorphisms of free groups

f: X — X 1s a homotopy equivalence.

Is f ~ a homeomorphism?

f ~ graph symmetry if and only if [¢] has finite order.

(Culler, Khramtsov, Zimmermann)




Automorphisms of free groups

f: X — X 1s a homotopy equivalence and assume [¢]

has infinite order.
Is f ~ alocally injective map (immersion)?
No: immersion f = f : X — X injective

surjective ¢ = f simplicial homeomorphism

— f 1s a homeomorphism.




Automorphisms of free groups

[+ X — X is a homotopy equivalence and assume [¢]

has infinite order. What’s the best we can hope for?

(Bestvina-Handel) f ~ a relative train track
— Scott conjecture
(Bestvina-Feighn-Handel) f ~ improved rel. train track

— Tits alternative for Out(£},)




Automorphisms of free groups

f: X — X 1s a homotopy equivalence and assume [¢]

has infinite order. What’s the best we can hope for?

(Brinkmann) The following are equivalent:

1. [¢] 1s atoroidal, X x {0} X x[0.1]
2. F,, x4 Z 18 word-hyperbolic; Yo {1{ v
3. F,, X4 Z has no BS(1,n) subgroups;
4. F,, x4 7Z has no Z? subgroups.
- {0} St x [0,1]

x {1}




Nonsurjective endomorphisms

f: X — X 1s m-injective.

Is f ~ an improved relative train track? No!
Is f ~ arelative train track? Yes, but not enough!

Is f ~ an immersion? Most times!

(Reynolds) If ¢ 1s nonsurjective and irreducible, then

f ~ a unique expanding local homothety.




Examples and non-examples

Examples: n=1, ¢:a+— a’ n=2 ¢: a = ab
] Oy, far
f = degree 2 map X = OG,a. {bl—>['r]

J = obvious map

4
a—b

®l(apy : (a,b) = (a,b) is an infinite order
Non-examples: n =3, ¢: (b~ ab

5 automorphism —> f % an immersion.
lc—c

n=2 ¢: {Z’: ij ®l(qy : (@) — (a) 1s an automorphism
—> [ % an expanding immersion.

Other reasons —> f % an immersion.




My results

Theorem 1. (Mutanguha)

If ¢ is nonsurjective, then f ~ a relative expanding immersion.

(s b X:(a,b)O L (ﬁ):{a|—>a X:(a)G

. bl—>a,2b bl—)'a,b2 .
(CH C f:(b,ba)Q f: (a)Q

Corollary. (M.) f ~ expanding immersion <= |¢| has no fixed proper

S
I
o
-

free factor system.

Theorem 2. (M.)
F, x4 is word-hyperbolic <= it has no BS(1,n) subgroups.



Outer space and its spine

CV,, = {(X, «) marked metric graphs }/ ~

(i)~ (K00t T(X)
o l
F, g« homothety
>

m1(X2)  with [g 0 1] = [aa]

Spine of C'V,, = CV,,/ ~" where we forget the metrics

= vertices of a locally finite simplicial complex



The action on the spine

[¢] an outer endomorphism F, > ] ( X!)
[X, a] a marked graph in the spine qsl

l@'* immersion
F’n, T> 1 (X)

Set [Xa OJ] ’ [qb] = [X’vaf]

Lemma.

Fixed point in the spine <— [ ~ immersion.
Fixed point in outer space < f ~ local homothety.



Sketch proof of Reynolds’ theorem

(Reynolds) If ¢ is nonsurjective and irreducible, then its
action on outer space has a unique fixed point.

1) Choose a marked graph [ X, o] and iterate [ X, o] - [¢]"
2) The sequence is eventually periodic (in the spine)

3) There’s a fixed point next to the periodic points

4) ...

n=9 & {a — ab

b— ba
ZOG {a =au
adll
f = obvious map is an immersion

|.X, o 1s a fixed point in the spine




Sketch proof of Reynolds’ theorem

Same marking



Sketch proof of Reynolds’ theorem




How to use prove things for injective endomorphisms

Step 1. Prove the result for automorphisms.
Step 2. Prove the result for expanding immersions.

Step 3. “Relativize” Step 2 to combine with Step 1 using relative expanding

1mmersions.

Step 4. Celebrate!







