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Abstract

This survey is based on a minicourse I taught at UC-Riverside in March 2023. The
goal is to show the relation between the dynamics of a free group endomorphism and
the geometry of its mapping torus. As a new result, we characterize the Dehn functions
of ascending HNN extensions of free groups: they are linear, quadratic, or exponential.

The minicourse consisted of four lectures, and this survey’s four sections respect that
structure (for the most part). The main reference was my thesis [Mut21].
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1 Outline

1.1 Motivation: surface bundles over the circle

The story starts with Bill Thurston’s hyperbolization theorem. Suppose Σ is a closed
surface with negative Euler characteristic, f : Σ → Σ a homeomorphism, and φ = [f ]
the isotopy class of f . The (topological) mapping torus Mf = Σ × [0, 1]/∼f of f is the
quotient space defined using the equivalence relation (s, 0) ∼f (f(s), 1) for all s ∈ Σ. The
3-manifolds Mf and Mg are homeomorphic if f, g are isotopic; therefore, it makes sense to
call them the mapping torus of φ and denote them byMφ. Thurston’s remarkable theorem
related the dynamics of the mapping class φ to the geometry of its mapping torus Mφ:

Theorem 1.1 (cf. [Thu82, Thm. 5.6]). The following are equivalent:

1. the mapping torus Mφ admits an H3-structure, i.e. there is a homeomorphism from
the universal cover of Mφ to H3 that conjugates the deck transformations to isome-
tries;

2. the fundamental group π1(Mφ) has no Z2-subgroup; and

3. the mapping class φ is atoroidal: for all n ≥ 1 and π1-injective maps σ : S1 → Σ, the
maps fn ◦ σ, σ are not homotopic.

The theorem gives an equivalence of: (1) a geometric property of Mφ; (2) an algebraic
property of π1(Mφ); and (3) a dynamical property of φ. The real content (and most
difficult part) of this theorem is the implication (3⇒1). It requires a fine understanding
of the dynamics of atoroidal mapping classes acting on homotopy classes of closed curves
in Σ (and much more). The following theorem is the initial step in this direction and forms
part of the Nielsen–Thurston classification [Thu88, Thm. 4] for mapping classes:

Theorem 1.2. The mapping class φ is atoroidal if and only if it contains a pseudo-Anosov
homeomorphism of Σ.

We refer the reader to case (ii) of [Thu88, Thm. 4] for the definition of pseudo-Anosov
homeomorphisms. Some authors will call a mapping class pseudo-Anosov if it contains a
pseudo-Anosov homeomorphism. For our purposes, we mention that the mapping class
containing a pseudo-Anosov homeomorphism allows Thurston to apply the double limit
theorem, a separate deep result [Thu82, Thm. 5.4], to conclude Theorem 1.1.
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1.2 Motivation: free-by-cyclic groups

Bringing the story closer to our goal, Peter Brinkmann proved a (coarse) hyperbolization
theorem analogous to Theorem 1.1. Let F be a finitely generated free group, Φ: F → F an
automorphism, and ϕ = [Φ] the outer automorphism for Φ. The (algebraic) mapping torus
F ⋊Φ Z of Φ is the free-by-cyclic group given by the relative presentation:

F ⋊Φ Z = ⟨F, t | txt−1 = Φ(x), ∀x ∈ F⟩;

as before, the free-by-cyclic groups F ⋊Φ Z and F ⋊Ψ Z are isomorphic for any Ψ ∈ ϕ,
and we denote them by F ⋊ϕ Z. Brinkmann’s theorem related the dynamics of an outer
automorphism to the geometry of its mapping torus:

Theorem 1.3 (cf. [Bri00, Thm. 1.2]). The following are equivalent:

1. the mapping torus F ⋊ϕ Z is hyperbolic;

2. F ⋊ϕ Z has no Z2-subgroup; and

3. the outer automorphism ϕ is atoroidal: for all n ≥ 1 and nontrivial x ∈ F, the
elements Φn(x), x are not conjugate in F.

See Section 4 for a definition of hyperbolic groups. As with Thurston’s theorem,
Brinkmann’s theorem gives an equivalence of geometric, algebraic, and dynamical proper-
ties, and the hard part is the implication (3⇒1). The outer automorphism ϕ is hyperbolic

if there is a constant L ≥ 1 such that 2 · ∥ΦL(x)∥ ≤ max(∥x∥, ∥Φ2L(x)∥) for all x ∈ F; here,
∥x∥ is the word-length of the shortest representative of the conjugacy class of x in F with
respect to some arbitrarily chosen basis of F. Brinkmann’s contribution was the following
intermediate step:

Theorem 1.4 (cf. [Bri00, Thm. 1.1]). If the outer automorphism ϕ is atoroidal, then it is
hyperbolic.

Theorem 1.3 then follows from a special case of Bestvina–Feighn’s combination theo-
rem [BF92]: hyperbolicity of an outer automorphism implies hyperbolicity of its mapping
torus.

1.3 Objective: ascending HNN extensions of free groups

To conclude our story, we extended Brinkmann’s theorem to the case when Φ: F → F is
an injective but not necessarily surjective endomorphism. The outer class ϕ = [Φ] is the
set of endomorphisms of F obtained by post-composing Φ with the inner automorphisms
of F. The mapping torus F∗ϕ of ϕ is the ascending HNN extension of F given by the same
relative presentation as before:

F∗ϕ = ⟨F, t | txt−1 = Φ(x), ∀x ∈ F⟩;
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the only difference is that F is not a normal subgroup of the mapping torus if Φ is not
surjective. See [Ser77, §I.1.4] for the general definition of HNN extensions. If F = Z,
then Φ is multiplication by a nonzero integer d and its mapping torus, denoted BS(1, d), is
an example of a Baumslag–Solitar group; note that BS(1, 1) = Z2 and BS(1,−1) are the
fundamental groups of the torus and Klein bottle respectively. In this survey, we sketch
an equivalence between the dynamics of ϕ and the geometry of F∗ϕ.

Theorem 4.3 (cf. [Mut21, Thm. 5.2.7]). The following are equivalent:

1. The mapping torus F∗ϕ is hyperbolic;

2. F∗ϕ has no BS(1, d)-subgroup for all d ≥ 1; and

3. for all n, d ≥ 1 and nontrivial x ∈ F, the elements Φn(x), xd are not conjugate in F.

Condition (3) is stronger than the previous atoroidal property. To prove the difficult
implication (3⇒1), we will establish some quantitative properties — hyperbolicity of the
outer endomorphism ϕ is one of them but is not sufficient when the endomorphism Φ is not
surjective. The implication will then follow from Bestvina–Feighn’s combination theorem.

Misha Gromov proved the equivalence between hyperbolicity of a finitely presented
group and linearity of its Dehn function (see Section 4 for definitions). Bridson–Groves
show that F⋊ϕ Z has a linear or quadratic Dehn function [BG10]. Ilya Kapovich observed
that the Dehn function of F∗ϕ is exponential if it contains a BS(1, d)-subgroup for some
d ≥ 2 [Kap00, Cor. 5.7]. As a new result, we use relative hyperbolicity to answer Kapovich’s
question asking for all the possible Dehn functions [Kap00, Prob. 6.5]:

Corollary 4.8. Ascending HNN extensions of finitely generated free groups have linear,
quadratic, or exponential Dehn functions.

1.4 Prerequisites

Familiarity with basic algebraic topology will be assumed; for instance, we consider CW-
complexes, fundamental groups, and covering spaces. We also assume familiarity with
John Stallings’ paper “Topology of finite graphs” [Sta83]. While we define the graph-centric
terms (e.g. folds, pullbacks,. . . ) in our notes, we do not provide illustrations and examples;
Stallings’ paper is a short and perfect reference for this. We use the language of Bass–Serre
theory in Section 4; the first half of Jean-Pierre Serre’s book Trees will be our reference
[Ser77, Chapter I. Trees and Amalgams]. Finally, the reader may use the notes [ABC+91]
as a standard reference for hyperbolic groups, and the papers [Far98, Bow12] for relatively
hyperbolic groups.

Acknowledgments. I thank: Matthew Durham and Thomas Koberda for organizing the
workshop and inviting me to give a minicourse; Kailey Perry for giving the introductory talk
for the minicourse; and Jagerynn Verano (and anonymous referees) for helpful comments
on a preliminary version.
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2 Expansions of free splittings

Throughout the survey, F will denote a finitely generated nontrivial free group, Φ: F → F
an injective endomorphism, and ϕ = [Φ] its outer class.

The hyperbolization theorems (Theorems 1.3 and 4.3) need a fine understanding of the
dynamics of ϕ acting on conjugacy classes of elements in F. When Φ is surjective, the theory
of train tracks is a robust framework for studying these dynamics. In particular, Bestvina–
Feighn–Handel introduced improved relative train tracks in [BFH00], and Brinkmann used
them to prove Theorem 1.4.

We mostly care about the case when Φ is not surjective. Our current goal is to find
optimal representatives that exhibit the needed dynamics of ϕ. Rather than try to directly
extend the theory of improved relative train tracks to the nonsurjective case, we will develop
our optimal representatives “from scratch” using nonsurjectivity to our advantage. No
knowledge of train tracks is necessary or assumed. We will use Stallings maps, bounded
cancellation, and free splittings.

2.1 Stallings maps

A graph is a 1-dimensional CW-complex, and the volume vol(Γ) of a finite graph Γ is the
number of edges in Γ. A core graph is a graph whose components are not contractible and
have no proper deformation retracts. The core of a graph is the smallest deformation retract
of the union of the graphs noncontractible components. A cellular map is a continuous
function between graphs that maps vertices to vertices and is locally injective or constant
on edges. An immersion is a cellular map that is locally injective everywhere. An expansion
is an immersion g : Γ → Γ such that the combinatorial length (i.e. number of edges) of the
edge-paths gn(e) is unbounded as n→ ∞ for every edge e in Γ.

Example 2.1. Let S1 = {z ∈ C : ∥z∥ = 1}; define a CW-structure by declaring 1 ∈ S1 to
be a vertex and S1 \ {1} an edge. This core graph is a rose (i.e. a graph with one vertex)
with one petal (i.e. edge). For an integer d ̸= 0, the cellular map S1 → S1 given by z 7→ zd

is an immersion that is an expansion if and only if |d| ≥ 2.

There are three basic cellular maps that will be instrumental to our constructions of
immersions and expansions. Fix a graph Γ, edges e1, e2 in Γ, and a point p ∈ e1. We define
a new CW-structure Γ′ on the underlying space of Γ: declare p to be a vertex (in addition
to the vertices of Γ) and replace e1 with the two components of e1 \ {p}. The identity
map on the underlying space is a cellular map Γ → Γ′ known as a subdivision. Define
an equivalence relation ∼2 on Γ by setting x ∼2 y if x = y or x, y are in the closure of
e2. The quotient Γ′′ = Γ/∼2 inherits a natural CW-structure such that the quotient map
Γ → Γ′′ is a cellular map known as an edge collapse. Finally, assume e1, e2 are distinct. We
represent orientations of the edges as topological embeddings ϵ1, ϵ2 : (0, 1) → Γ of the open
unit interval into the underlying space of Γ. If the continuous extensions ϵ1, ϵ2 : [0, 1] → Γ
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satisfy ϵ1(0) = ϵ2(0), then we can define another equivalence relation ∼f on Γ by setting
x ∼f y if x = y or there is some t ∈ [0, 1] such that x = ϵ1(t) and y = ϵ2(t). The quotient
Γ′′′ = Γ/∼f inherits a natural CW-structure such that the quotient map Γ → Γ′′′ is a
cellular map known as a fold (of oriented edges). The following theorem is due to Stallings.

Theorem 2.1. Any cellular map of finite graphs is a composition of subdivisions, edge
collapses, folds, and an immersion that maps edges to edges.

We refer to this as the Stallings decomposition of the cellular map.

Proof. It is immediate from the definitions that any cellular map of finite graphs is a
composition of subdivisions, edge collapses, and a cellular map that maps edges to edges.
Stallings proved that any cellular map of finite graphs that maps edges to edges is a
composition of folds and an immersion [Sta83, §3.3].

Let Γ be a connected finite core graph and ⋆ ∈ Γ a chosen vertex. Assume Γ is a
marked graph, i.e. we have fixed an identification/marking π1(Γ, ⋆) ∼= F. Pick a nontrivial

subgroup A ≤ F, and let c : (Γ̂, ⋆̂) → (Γ, ⋆) be the based cover corresponding to A. The
Stallings based map ŝ : (Ŝ, ⋆̂) → (Γ, ⋆) for A over (Γ, ⋆) is the restriction of c to the smallest

deformation retract of (Γ̂, ⋆̂) containing ⋆̂; there is an algorithm for constructing ŝ when A
is finitely generated [Sta83, §5.4]. The Stallings map s : S → Γ for the conjugacy class [A]

(over Γ) is the restriction of ŝ to the core of Γ̂. For n ≥ 1, let sn : S(ϕ
n) → Γ denote the

Stallings map for [Φn(F)].

Example 2.2. Suppose F = Z. Then Φ is multiplication by d ̸= 0. We identify Z with
the fundamental group π(S1, ⋆) of the rose with one petal. For n ≥ 1, the Stallings map
sn : S(ϕ

n) → S1 is a cover with |d|n sheets; as a CW-complex, S(ϕn) has |d|n vertices and
edges. Note that vol(S(ϕn)) → ∞ as n→ ∞ if and only if Φ is not surjective (i.e. |d| ≥ 2).

When Φ is surjective, the Stallings maps sn are the identity map and not really useful
for anything. On the other hand, the previous example illustrates that they get arbitrarily
complicated (as measured with volume) when F is cyclic and Φ is not surjective. The
following lemma shows that the dichotomy holds even when F is not cyclic:

Lemma 2.2. Let Γ be a marked graph and S(ϕn) → Γ the Stallings map for [Φn(F)]. The
endomorphism Φ is not surjective if and only if vol(S(ϕn)) → ∞ as n→ ∞.

Proof. If Φ is surjective, then sn is the identity id : Γ → Γ, and vol(S(ϕn)) = vol(Γ) is con-
stant in n ≥ 1. Conversely, suppose there exists a constant V ≥ 1 such that vol(S(ϕn)) ≤ V
for infinitely many n ≥ 1. There are only finitely many combinatorially distinct immersions
Γ′ → Γ (mapping edges to edges) with vol(Γ′) ≤ V . So, for some n′ > n ≥ 1, there is a cel-
lular isomorphism ι : S(ϕn

′
) → S(ϕn) such that sn′ = sn◦ι. This can be extended to an iso-

morphism ι̂ : Γ̂n′ → Γ̂n of covers of Γ. Correspondence between covers and conjugacy classes
of subgroups implies [Φn

′
(F)] = [Φn(F)]. In other words, xΦn(F)x−1 = Φn

′
(F) ≤ Φn(F) for

some x ∈ F. It is as a neat exercise that xΦn(F)x−1 = Φn(F) and hence Φ is surjective.
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The exercise at the end of the proof is a special case of the following:

Exercise 2.3. Let Ψ: F → F be an automorphism andA ≤ F a finitely generated subgroup.
If Ψ(A) ≤ A, then Ψ(A) = A.

Hint. Use subgroup separability (also known as the LERF-property or Hall’s theorem): for
any finitely generated subgroup A ≤ F and element b ∈ F \ A, there is a homomorphism
π : F → F to a finite group F such that π(b) /∈ π(A); moreover, subgroup separability can
be proven using the Stallings based map for A over a rose [Sta83, §6].

2.2 Bounded cancellation

Let Γ be a marked graph. A cellular map g : Γ → Γ represents ϕ if g induces ϕ via the
chosen marking π1(Γ) ∼= F. The outer class ϕ is reducible if it can be represented by a
cellular map with an invariant nonempty proper core subgraph; otherwise, it is irreducible.

Example 2.4. Suppose F = ⟨a, b⟩ and Φ: F → F maps a 7→ a and b 7→ ba−1b−1. Let R
be the oriented rose with two petals, and pick the marking π1(R) ∼= F that identifies the
basis {a, b} ⊂ F with the petals of R. We abuse notation and refer to the petals by a, b
accordingly (see Fig. 1); the petals with opposite orientations are ā, b̄. The cellular map
f : R→ R that maps a to a and b to the edge-path bāb̄ represents the outer class ϕ = [Φ].
The petal a determines an f -invariant proper core subgroup of R, and so ϕ is reducible.

Now suppose Ψ: F → F maps a 7→ ab and b 7→ ba, and let ψ = [Ψ] be the outer class. It
takes more work to show that an outer endomorphism is irreducible. As F has rank 2, any
nonempty proper core subgraph of an F-marked graph has circle components; therefore, to
prove that ψ is irreducible, it suffices to show that Ψn(x) and xd are not conjugate in F for
all n, d ≥ 1 and nontrivial x ∈ F. For the case d = 1, note that the cellular map g : R→ R
that maps a to ab and b to ba is an expansion representing ψ (see Fig. 1). The case d ≥ 2
will follow from Exercises 3.3 and 3.4. We return to these examples throughout the survey.

Figure 1: A marked rose and two cellular maps. We illustrate a cellular map g : Γ → Γ′

between oriented graphs that is locally injective on edges by overlaying each edge e in Γ
with the labels of the immersed edge-path g(e) in Γ′.

Part of Patrick Reynolds’ thesis [Rey11] shows that ϕ is (uniquely) represented by an
expansion if it is irreducible and Φ is not surjective. We give a proof that is comparatively
elementary as it only uses the classical bounded cancellation lemma and Stallings maps.
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Lemma 2.3 (bounded cancellation). If f : Γ′ → Γ is a cellular map of finite graphs and
f̃ : Γ̃′ → Γ̃ a lift to the universal covers, then there is a constant C ≥ 0 such that the f̃ -
image of the geodesic [p, q] is in the C-neighborhood of [f̃(p), f̃(q)] for all vertices p, q ∈ Γ̃′.

The minimal such constant C is the cancellation constant for the cellular map f and de-
noted C(f). In a simplicial tree (i.e. simply connected graph), the geodesic [u, v] between
two vertices u, v is the unique immersed edge-path that has the vertices as it endpoints.
(Combinatorial) Neighborhoods of edge-paths are considered with respect to the combi-
natorial length. The following proof is adapted from Bestvina–Feighn–Handel [BFH97,
Lem. 3.1].

Proof. By Theorem 2.1, the cellular map f is a composition of subdivisions, edge collapses,
n folds for some n ≥ 0, and an immersion that maps edges to edges. The lemma holds for:
subdivisions and edge collapses with C = 0; folds with C = 1; and immersions with C = 0.
By the next exercise, the lemma holds for f with C = n.

Exercise 2.5. Suppose Lemma 2.3 holds for cellular maps g : Γ′ → Γ and g′ : Γ′′ → Γ′

with constants C and C ′ respectively. If g′ is a subdivision or g maps edges to edges or
vertices, then the lemma holds for g ◦ g′ : Γ′′ → Γ with the constant C + C ′.

A point in a graph is bivalent if it has a neighborhood homeomorphic to R. A point in a
core graph is a branch point if it is not bivalent. Let Γ be a core graph with no component
homeomorphic to S1. A natural arc of Γ is a maximal connected subset that contains
no branch point. The natural structure on Γ is the CW-complex whose vertices are the
branch points and edges are the natural arcs (i.e. forget the bivalent vertices). A cellular
map g : Γ → Γ is natural if it is a cellular map with respect to the natural structure, i.e. it
maps branch points to branch points and is injective or constant near bivalent points.

Theorem 2.4 (cf. [Rey11, Cor. 3.23]). If the endomorphism Φ is not surjective and its
outer class ϕ is irreducible, then some expansion g : Γ → Γ represents ϕ.

Proof (cf. [Mut21, Prop. 3.4.1]). Let rank(F) ≥ 2 and g0 : Γ0 → Γ0 be a cellular map rep-
resenting ϕ via a marking π1(Γ0) ∼= F. The map g0 is K-Lipschitz (for some K ≥ 1) with
cancellation constant C = C(g0). Let Γ̂n → Γ0 be the cover corresponding to [Φn(F)]
and S(ϕn) → Γ0 the Stallings map for [Φn(F)]. The lift of g0 to Γ̂n and the deformation
retraction Γ̂n → S(ϕn) induce a K-Lipschitz map gn : S(ϕ

n) → S(ϕn) with C(gn) ≤ C. By
bounded cancellation, the map gn maps branch points to the C-neighborhood of branch
points. After replacing gn with a homotopic map, we may assume it is a natural map with
Lipschitz constant K + C and cancellation constant C(gn) ≤ 2C.

By nonsurjectivity of Φ and Lemma 2.2, we can pick N ≫ 1 such that S(ϕN ) has a
natural arc with more than 2C(K + C)M edges, where M = 3 rank(F) − 4. A natural
arc α of S(ϕN ) is long if gmN (α) covers a natural arc with more than 2C(K + C)M edges
for some m ≥ 0; otherwise, it is short. Since S(ϕN ) has at most M +1 natural arcs and gN
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is (K + C)-Lipschitz, long natural arcs have more than 2C edges. The gN -invariant short
subgraph (i.e. closure of union of short natural arcs) is a proper subgraph. By irreducibility
of ϕ, the components of the short subgraph are contractible — note that gN represents ϕ
via the isomorphism ΦN : F → ΦN (F).

Let Γ be the graph obtained by collapsing in S(ϕN ) each component of the short
subgraph. Then the natural map g : Γ → Γ induced by gN represents ϕ. Since the natural
arcs of Γ have more than 2C ≥ C(gN ) ≥ C(g) edges, there are no folds in the Stallings
decomposition of the natural map g and C(g) = 0. By injectivity of Φ, the subgraphs
on which g is constant are contractible; after repeatedly collapsing these subgraphs, we
may assume g is an immersion. An edge e of Γ is non-expanding if its iterates gm(e) are
edges for all m ≥ 1. The g-invariant non-expanding subgraph (i.e. closure of the union
of non-expanding edges) is proper as Φ is not surjective. By irreducibility of ϕ again, the
components of the non-expanding subgraph are contractible. Collapse the non-expanding
subgraph to ensure g is an expansion.

By Lemma 2.2, expansions cannot represent outer automorphisms.

Exercise 2.6. If an expansion represents the outer endomorphism ϕ, then the endomor-
phism Φ is not surjective.

More generally, an expansion represents ϕ if and only if there are no ϕ-periodic (con-
jugacy classes of) nontrivial free factors of F — a precise statement is given in the next
subsection. By bounded cancellation, an expansion representing ϕ is unique if it exists.

Exercise 2.7. If g : Γ → Γ and g′ : Γ′ → Γ′ are expansions representing the outer endo-
morphism ϕ, then there is a homeomorphism h : Γ → Γ′ such that g′ ◦ h = h ◦ g.

Hint. This exercise is a good test for the reader’s understanding of our proof of Theorem 2.4.
Let a cellular map h0 : Γ → Γ′ be a homotopy equivalence between the marked graphs that
induces the trivial outer automorphism of F. So g′ ◦h0 ≃ h0 ◦g. Denote the Stallings maps
for [Φn(F)] over Γ and Γ′ by sn : S(ϕ

n) → Γ and s′n : S(ϕ
n)′ → Γ′ respectively. Since g is an

expansion, S(ϕn) is a subdivision of Γ; the same holds for S(ϕn)′ and Γ′. By considering
natural maps hn : S(ϕ

n) → S(ϕn)′ that are homotopic to lifts of h0 for n ≫ 1, bounded
cancellation can be used to deduce that h0 is homotopic to a homeomorphism.

2.3 Free splittings

We introduce our final tool: free splittings! Let Γ be a finite core graph with no bivalent
vertices. A graph pair (Γ, G) is a choice of a proper core subgraph G ⊂ Γ, which we call
pair’s peripheral subgraph. For a graph pair (Γ, G), edges of G are peripheral and the
remaining edges of Γ are nonperipheral. The relative length of an edge-path in Γ is the
number of nonperipheral edges in the path.
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A relative cellular map (Γ, G) → (Γ′, G′) is a cellular map Γ → Γ′ that maps G to G′.

The relative universal cover of (Γ, G) is the result of collapsing in Γ̃ each component of G̃,
where Γ̃ is the universal cover of Γ and G̃ ⊂ Γ̃ the lift ofG. A relative immersion is a relative
cellular map (Γ, G) → (Γ, G) whose lifts to the universal covers induce immersions on the
relative universal covers. Finally, a relative expansion is a relative immersion g : (Γ, G) →
(Γ, G) such that the relative length of gn(e) is unbounded as n→ ∞ for every nonperipheral
edge e in Γ. When G is empty, these relative notions are exactly the usual ones.

Example 2.8. Suppose F = ⟨a, b⟩ and Φ: F → F maps a 7→ a−1 and b 7→ bab−1. Let B
be the (oriented) barbell graph (see Fig. 2): it consists of two (left/right) loops ℓ, r and a
separating (middle) edge m. Pick the marking that identifies a, b with ℓ,mrm̄ respectively.
The cellular map h : B → B that maps ℓ 7→ ℓ̄, m 7→ mrm̄, and r 7→ ℓ is an immersion but
not an expansion. Now let G ⊂ B be the proper core subgraph that is the closure of ℓ∪ r.
The relative cellular map h : (B,G) → (B,G) is a relative expansion representing ϕ. The
map h preserves the component of G corresponding to ℓ, and the restriction of h to this
component is a homotopy equivalence — this motivates the next definitions.

Figure 2: A marked barbell and a relative expansion.

The peripheral restriction of a relative cellular map g : (Γ, G) → (Γ, G) is the restric-
tion of g to G. The g-stable part G′ of G is the union of components of G that inter-

sect gN (G), where N is the number of components in G; the peripheral restriction is an
almost homotopy equivalence if its restriction to G′ is a homotopy equivalence.

Now assume Γ is also connected. A free splitting (of F) is a graph pair (Γ, G) with a
marking π1(Γ) ∼= F. A nontrivial conjugacy class [x] is peripheral in a free splitting (Γ, G)
if the immersed loop in Γ representing [x] is in G; otherwise, it is nonperipheral.

Remark. In [Mut21], a free splitting is defined as the relative universal cover of a marked
graph pair. Relative cellular maps are then the “lifts” of cellular maps of pairs to the
relative universal covers; relative immersions/expansions are defined on the relative covers
as well. The advantage of this point of view is that relative immersions/expansions are
honest immersions/expansions, which makes proofs clearer. The downside is that relative
universal covers are infinite objects and hard to illustrate. Generally, a free splitting of a
group G is a simplicial action of the group on a simplicial tree with trivial stabilizers for
points in edges; equivalently, a free splitting of G is a graph of groups decomposition of G
with trivial edge groups [Ser77, §I.5 Thm. 13].

By the same argument used for Exercise 2.6, a relative expansion cannot represent an
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outer automorphism. The converse, a generalization of Reynold’s Theorem 2.4, is the heart
of [Mut21] and this survey.

Theorem 2.5 (cf. [Mut21, Thm. 3.4.5]). If the endomorphism Φ is not surjective, then its
outer class ϕ is represented by a relative expansion g : (Γ, G) → (Γ, G) whose peripheral
restriction is an almost homotopy equivalence.

Sketch of proof. Construct a (K + C)-Lipschitz natural map gN : S(ϕN ) → S(ϕN ) with
cancellation constant C(gN ) ≤ 2C and a gN -invariant short proper subgraph GN ⊂ S(ϕN )
as in our proof of Theorem 2.4. This time, Γ is obtained by: collapsing in S(ϕN ) each
contractible component of GN ; deformation retracting the noncontractible components to
their cores; and forgetting bivalent vertices. Let G ⊂ Γ be the image of core(GN ), and
call this process “relative collapsing GN” in S(ϕN ). Then (Γ, G) is a free splitting, and
the induced relative cellular map g : (Γ, G) → (Γ, G) represents ϕ with relative cancellation
constant CG(g) = 0, i.e. the induced maps on the relative universal cover has cancellation
constant C = 0.

In the base case, the peripheral restriction of g is an almost homotopy equivalence. By
injectivity of Φ, core(G′) = core(G) for subgraphs G′ ⊃ G on which g is relatively constant.
After repeatedly relatively collapsing these subgraphs, we may assume g is a relative im-
mersion. As Φ is not surjective, some edge must be relatively expanding. Relatively collapse
the non-relatively-expanding edges to ensure g is a relative expansion (whose peripheral
restriction is an almost homotopy equivalence). This concludes the base case.

By induction, we may suppose the peripheral restriction gG of g is a relative expansion
on a graph pair (G,H) whose peripheral restriction is an almost homotopy equivalence.
For a simplification of the remaining steps, you may pretend H is empty — the steps in
the general relative setting are nearly identical. There are two cases to consider: either
some gm(Γ) ⊂ G for some m ≥ 1; or g is a relative immersion (after repeatedly relatively
collapse subgraphs on which g is relatively constant if necessary).
Case 1 : the Stallings map for [Φm(F)] over (G,H) determines a free splitting with a relative
expansion representing ϕ whose peripheral restriction is an almost homotopy equivalence.
Case 2 : use the relative expansion gG and bounded cancellation to promote g to a relative
expansion whose peripheral restriction is an almost homotopy equivalence.

If a free splitting (Γ, G) admits a relative expansion g whose peripheral restriction is
an almost homotopy equivalence, then the g-stable part of G determines the unique (up to
conjugacy) free factor system consisting of maximal ϕ-periodic nontrivial free factors of F;
thus any two such free splittings determine the same peripheral conjugacy classes in F.
By bounded cancellation, there is an essentially unique relative expansion representing ϕ
whose peripheral restriction is an almost homotopy equivalence [Mut21, Cor. 3.4.7] (when
Φ is not surjective), and we call it the canonical relative expansion for ϕ. Note that an
expansion represents ϕ if and only if Φ is not surjective and the canonical relative expansion
for ϕ is an expansion (see also [Mut21, Cor. 3.4.8]).
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Our first main application of canonical relative expansions will be the extension of
Brinkmann’s Theorem 1.4. Pick an arbitrary marked graph Γ. For x ∈ F, let ∥x∥ be the
combinatorial length of the immersed (or constant) loop in Γ representing the conjugacy
class [x] in F. The outer endomorphism ϕ is hyperbolic if there is a constant L ≥ 1 such

that 2 · ∥ΦL(x)∥ ≤ max(∥x∥, ∥Φ2L(x)∥) for all x ∈ F; this property is independent of the
chosen marked graph Γ. The following is a nice exercise for working with the definition of
hyperbolicity.

Exercise 2.9. If the outer endomorphism ϕ is represented by an expansion, then it is
hyperbolic.

The outer class ϕ is atoroidal if Φn(x) is not conjugate to x in F for all n ≥ 1 and
nontrivial x ∈ F. Here is another exercise for working with hyperbolicity.

Exercise 2.10. If the outer endomorphism ϕ is hyperbolic, then it is atoroidal.

The converse for this exercise follows from Theorem 1.4 and the existence of canonical
relative expansions.

Proposition 2.6 (cf. [Mut21, Prop. 5.2.6]). If the outer endomorphism ϕ is atoroidal, then
it is hyperbolic.

Sketch of proof. Theorem 1.4 covers the case when Φ is surjective. So we may assume Φ
is not surjective. Let g : (Γ, G) → (Γ, G) be the canonical relative expansion for ϕ. There
is a constant L0 ≥ 1 such that 2 · ∥x∥G ≤ ∥ΦL0(x)∥G for all x ∈ F, where ∥x∥G is the
relative length of the immersed loop in Γ representing [x]. The peripheral restriction is an
almost homotopy equivalence and, by Theorem 1.4 again, there is a constant L1 ≥ 1 such
that 2 · ∥ΦL1(x)∥ ≤ max(∥x∥, ∥Φ2L1(x)∥) for all peripheral x ∈ F since ϕ is atoroidal. With
care, we can deduce that ϕ is hyperbolic.

2.4 Side quest: stable images

Most of this survey focuses on the outer class ϕ of the injective endomorphism Φ: F → F.
Let us take a brief excursion into studying Φ.

The stable image of Φ is the intersection Φ∞(F) =
⋂
n≥1Φ

n(F). The stable image is
Φ-fixed (setwise), i.e. Φ(Φ∞(F)) = Φ∞(F); in particular, the restriction of Φ to the stable
image is an automorphism, and Edward Turner proved the stable image is a free factor of F
[Tur96, Thm. 1] (see also the algorithm of Corollary 2.9). It can be used to reduce questions
about injective endomorphisms to the corresponding questions about automorphisms. For
algorithmic reductions, we would need to compute the stable image.

Let (Γ, ⋆) be a connected finite graph Γ with a chosen vertex/basepoint ⋆ ∈ Γ; it is
a pointed core graph if there is no proper deformation retract containing the basepoint.
A based cellular map g : (Γ, ⋆) → (Γ, ⋆) is a cellular map that fixes the basepoint ⋆; it
represents Φ if there is a marking π1(Γ, ⋆) ∼= F such that g induces Φ. One can similarly
define pointed free splittings (Γ, G, ⋆) and based relative expansions g : (Γ, G, ⋆) → (Γ, G, ⋆).
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Example 2.11. Suppose F = ⟨a, b⟩ and Φ′ : F → F maps a 7→ b−2a−1b2 and b 7→ b−1ab.
Let the endomorphism Φ, the marked barbell B, and the relative expansion h be the
same as in Example 2.8. The endomorphisms Φ,Φ′ represent the same outer class ϕ.
Consider the unit interval [0, 1] as a graph with one edge. We construct a pointed core
graph (B′, 0) as follows: subdivide the separating edge m ⊂ B at a point p ∈ m, then
attach the unit interval by identifying 1 ∈ [0, 1] with p ∈ B (see Fig. 3). The deformation
retraction B′ → B induces a marking π1(B

′, 0) ∼= F. After applying a homotopy supported
on m (if necessary), the relative expansion h extends to a based relative expansion h′

on (B′, G, 0) that represents Φ′. As 0 /∈ G, the stable image of Φ′ is trivial; meanwhile, the
endomorphism Φ has the nontrivial stable image ⟨a⟩.

Figure 3: A marked pointed core graph and a based relative expansion.

We now show that relative expansions always extend to based relative expansions:

Theorem 2.7. If the endomorphism Φ is not surjective, then it is represented by a based
relative expansion g : (Γ, G, ⋆) → (Γ, G, ⋆) whose peripheral restriction is an almost homo-
topy equivalence.

The next proof is almost identical to our proof of Theorem 2.4; the minor difference is that
we keep track of the basepoint. To avoid repetition, we only sketch the proof and leave it
to the reader to fill in the details.

Sketch of proof. Let g′ : (Γ′, G) → (Γ′, G) be the canonical relative expansion for ϕ. Con-
struct Γ0 by identifying 1 ∈ [0, 1] with an arbitrary vertex in Γ′ and choose the basepoint
⋆0 = 0 ∈ [0, 1] ⊂ Γ0. We can now naively extend the marking π1(Γ

′) ∼= F to π1(Γ0, ⋆0) ∼= F
and the relative expansion g′ to a based relative cellular map g0 : (Γ0, G, ⋆0) → (Γ0, G, ⋆0)
that represents Φ.

Let S(Φn)⋆ → (Γ0, ⋆0) be the Stallings based map for Φn(F) over (Γ0, ⋆0). Analogous to
our proof of Theorem 2.4, construct a Lipschitz based natural map gN : S(ΦN )⋆ → S(ΦN )⋆
with cancellation constant C(gN ) ≤ 2C and a gN -invariant relatively short proper subgraph
GN ⊂ S(ΦN ). As before, relatively collapsing GN produces the required based relative
expansion g : (Γ, G, ⋆) → (Γ, G, ⋆). In essence, this proof shows that we could have carefully
extended:
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• the core graph Γ′ to a pointed core graph (Γ, ⋆) with core(Γ) = Γ′;

• the marking π1(Γ
′) ∼= F to π1(Γ, ⋆) ∼= F; and

• the relative expansion g′ to a based relative expansion g on (Γ, G, ⋆).

By bounded cancellation again, there is essentially a unique based relative expansion
representing Φ whose peripheral restriction is an almost homotopy equivalence; we call this
the canonical based relative expansion for Φ. Note that the proofs of Theorems 2.4, 2.5,
and 2.7 are constructive:

Corollary 2.8. There is an algorithm that finds the canonical based relative expansion
when the endomorphism Φ is not surjective.

Corollary 2.9. There is an algorithm that finds a basis for the stable image Φ∞(F).

Algorithm. If Φ is an automorphism, then Φ∞(F) = F; return any basis of F. Otherwise,
find the canonical based relative expansion on (Γ, G, ⋆) for Φ (Corollary 2.8). If the base-
point ⋆ is not in G, then Φ∞(F) is trivial; return the empty set. Otherwise, Φ∞(F) is
identified with π1(G, ⋆) via the marking π1(Γ, ⋆) ∼= F. In particular, Φ∞(F) is a free factor
of F; return any basis for π1(G, ⋆) ≤ π1(Γ, ⋆).

The first step of the previous algorithm is to check whether Φ is an automorphism.
We encourage the reader to use Stallings’ paper [Sta83] to give a procedure that decides
whether an endomorphism of F is injective/surjective.

Exercise 2.12. There is an algorithm that decides whether an endomorphism of F is
injective.

Exercise 2.13. There is an algorithm that decides whether an endomorphism of F is
surjective.

3 Pullbacks in free groups

In this section, we will introduce a second condition on ϕ needed for hyperbolization.

3.1 Pullbacks of immersions

Let A ≤ F be a finitely generated nontrivial subgroup; its reduced rank is defined as
rr(A) = rank(A) − 1. Hanna Neumann proved that a nontrivial intersection of any two
finitely generated subgroups A,B ≤ F satisfies rr(A ∩ B) ≤ 2 rr(A) rr(B) and conjectured
that the “2” in the upper bound could be removed [Neu57].

Let gi : Γi → Γ be immersions of core graphs for i = 1, 2. In the product Γ1×Γ2, define
the unreduced pullback as the subspace

Γ12 = {(x1, x2) ∈ Γ1 × Γ2 : g1(x1) = g2(x2)};
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this is homeomorphic to a graph, and it inherits a locally injective map g : Γ12 → Γ given
by g : (x1, x2) 7→ gi(xi). We endow Γ12 with a CW-structure so that g is an immersion
that maps edges to edges. Stallings gives a general construction of the unreduced pullback
of two cellular maps that map edges to edges [Sta83, §1.3]. The core of the graph Γ12 is
denoted Γ1 ×Γ Γ2, and the (reduced) pullback of (g1, g2) is the restriction s : Γ1 ×Γ Γ2 → Γ
of the immersion g to the core.

Example 3.1. Let S1 be the rose with one edge and gi : Γi → S1 the cover with di sheets
for i = 1, 2. The pullback of (g1, g2) is the disjoint union of gcd(d1, d2) connected covers
of S1, each with lcm(d1, d2) sheets.

Suppose A1, A2 ≤ F are finitely generated nontrivial subgroups and Γ is a marked
graph. Let si : Si → Γ (i = 1, 2) be the Stallings map for [Ai]. Stallings observed that the
pullback s : S1 ×Γ S2 → Γ of (s1, s2) represents intersections [Sta83, Thm. 5.5]: if A1 ∩ A2

is not trivial, then some component of s is the Stallings map for [A1 ∩A2] over Γ. Stephen
Gersten combined this with an Euler characteristic argument to give a topological proof of
H. Neumann’s inequality [Sta83, §7.7].

If a component of the pullback represents an intersection, what about the rest of the
pullback? Let A1\F/A2 be the set of double cosets for (A1, A2), and denote by O(A1, A2)
the subset consisting of double cosets A1xA2 such that A1 ∩ xA2x

−1 is not trivial. There
is a bijective correspondence between O(A1, A2) and the components of s : S1 ×Γ S2 → Γ,
where each component is the Stallings map for [A1 ∩ xA2x

−1] with A1xA2 ∈ O(A1, A2).
Extending Gersten’s observation, Walter Neumann proved −χ(S1 ×Γ S2) ≤ 2χ(S1)χ(S2)
and conjectured that the “2” could be removed [Neu90]; also known as the “strengthened
Hanna Neumann conjecture”, this was independently proven by Igor Mineyev [Min12] and
Joel Friedman [Fri15], but it is not needed for our purposes.

3.2 Pullback stability

For n ≥ 1, set On = O(Φn(F),Φn(F)). Pick a marked graph Γ, and let sn : S(ϕ
n) → Γ be

the Stallings maps for [Φn(F)]. The (iterated) pullbacks of ϕ are the pullbacks φn : Λn → Γ

of (sn, sn). By W. Neumann’s inequality, −χ(Λn) ≤ 2 rr(F)2.

Example 3.2. Suppose F = ⟨a, b⟩, the endomorphism Ψ: F → F maps a 7→ ab and b 7→ ba,
and ψ = [Ψ] is its outer class. Let R be the marked rose from Example 2.4. Then each
pullback Λn = S(ψn) ×R S(ψ

n) → R of ψ is a disjoint union of immersions of a rose and
two circles (see Fig. 4 for n = 1, 2). The core graph Λn is homeomorphic to the disjoint
union of a rose and two circles for all n ≥ 1; however, the volume vol(Λn) is 4 · 2n.

Let Ôn ⊂ On consist of the double cosets Φn(F)xΦn(F) such that x /∈ Φ(F). Denote by
Λ̂n ⊂ Λn the union of components of Λn corresponding to Ôn. As sn+1 factors through sn,
we have φn+1 = φn ◦ ψn+1 for some immersion ψn+1 : Λn+1 → Λn. The immersion ψn+1

restricts to an immersion Λ̂n+1 → Λ̂n; therefore, if Λ̂n is empty, then so is Λ̂n+1; and if Λ̂n is
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Figure 4: A marked rose and two pullbacks.

a disjoint union of circles, then so is Λ̂n+1 (possibly empty). By W. Neumann’s inequality,
the components of Λ̂n are circles for n ≥ 2 rr(F)2 (see [Mut21, Lem. 5.1.4]).

We say the pullbacks of ϕ stabilize if some Ôn (equivalently, Λ̂n) is empty — this is the
second condition needed for hyperbolization!

Exercise 3.3. Let F = ⟨a, b⟩ and Φ,Ψ be the endomorphisms from Example 2.4. The
pullbacks of their outer classes ϕ, ψ stabilize.

We used canonical relative expansions to extend Brinkmann’s characterization of hy-
perbolic outer automorphism (Theorem 1.4) to a characterization of hyperbolic outer en-
domorphisms (Proposition 2.6). We now use them again to give a (necessary and) sufficient
condition for pullbacks to stabilize:

Proposition 3.1 (cf. [Mut21, Prop. 5.1.5]). If the pullbacks of the outer endomorphism ϕ
do not stabilize, then some nontrivial elements Φm(x), xd are conjugate in F with m, d ≥ 2.

Sketch of proof. Suppose g : Γ → Γ represents ϕ and the pullbacks of ϕ do not stabilize,
i.e. Λ̂n ̸= ∅ for all n ≥ 1. Then Φ is not surjective and Λ̂n has circle components for
n ≥ 2 rr(F)2; therefore, a component of Λ̂n is a pair of immersed loops (σ, σ′) in Γ. Pick
r ≥ 2 rr(F)2, and consider the immersions ψn · · ·ψr+1 : Λ̂n → Λ̂r for n > r. By the
(infinitary) pigeonhole principle and axiom of countable choice, we can choose components
(σn, σ

′
n) of Λ̂n for n ≥ r such that (σr, σ

′
r) is in the image of (σn, σ

′
n) for n > r; in particular,

the loop gn−r(σn) is homotopic to a power of σr for n > r.
Let g be an expansion. The following argument is due to Kapovich [Kap00, Prop. 3.7].

Note that gn−r(σn) wraps around σr for n > r. Since g is an expansion, we can pick N ≫ r
so that gN−r(e) is longer than an arbitrarily large power of σr, say σ

100
r for all edges e in Γ.

By the pigeonhole principle again, some edge e is contained in loops σn, σn+m, where
N ≤ n < n+m ≤ N +vol(Γ). Since g is an immersion, gn−r(e) covers σ100r , and gm(σ100r )
wraps around σr. If the arbitrarily large power σ100r was chosen properly in terms of σr,
then a final pigeonhole principle argument implies gm(σr) is homotopic to a power σdr with
|d| ≥ 2. Thus σr represents a nontrivial conjugacy class [x] in F such that [Φm(x)] = [xd].
Double m and square d to ensure m, d ≥ 2.
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In general, let g be the canonical relative expansion. As the peripheral restriction of g
is an almost homotopy equivalence, the immersed loops σn (n ≥ r) are not peripheral. So
they contain nonperipheral edges and a relative version of Kapovich’s argument applies.

One can show directly that the converse holds, and we leave that as an elementary (but
challenging) exercise; alternatively, the converse is Theorem 4.7(5⇒4) below.

Exercise 3.4. If some nontrivial elements Φm(x), xd are conjugate in F with m, d ≥ 2,
then the pullbacks of the outer endomorphism ϕ do not stabilize.

The sketched proof of Proposition 3.1 invokes the axiom of countable choice and an
infinitary pigeonhole principle (if infinitely many pigeons are placed in finitely many holes,
then some hole has infinitely many pigeons); however, a careful reverse engineering of the
finitary pigeonhole principle (if nk pigeons are placed in k holes, then some hole has n
pigeons) can strengthen the proposition and make the proof constructive.

Exercise 3.5. For a computable positive integer N(ϕ), ÔN(ϕ) is not empty if and only if

some nontrivial elements Φm(x), xd are conjugate in F with m, d ≥ 2.

As a corollary, the pullbacks of ϕ stabilize if and only if ÔN(ϕ) is empty.

4 Geometry of mapping tori

We are ready to discuss the geometry of F∗ϕ. For δ ≥ 0, a geodesic space is δ-hyperbolic
if any geodesic triangle is in the δ-neighborhood of any pair of its sides; e.g. the real
hyperbolic n-spaces Hn (n ≥ 2) are ln(1 +

√
2)-hyperbolic. A finitely generated group is

hyperbolic if its Cayley graph with respect to a finite generating set is δ-hyperbolic for
some δ ≥ 0 [ABC+91, Def. 1.8, Prop. 2.1].

Now suppose G is the fundamental group of a finite 2-dimensional CW-complex X and
the 1-skeleton X̃(1) of the universal cover X̃ is not contractible. Let γ : S1γ → X̃(1) be a

simple loop in X̃, i.e. an embedding of the circle; the domain S1γ is a circle with a CW-
structure such that γ maps edges to edges. The length ℓ(γ) of γ is the combinatorial length
of its domain S1γ . A (reduced) disk diagram for γ is a continuous extension δ : Dδ → X

of γ such that: Dδ is the closed disk with some CW-structure and ∂Dδ = S1γ ; and δ
homeomorphically maps n-cells to n-cells (n = 0, 1, 2). The area of γ, denoted area(γ),
is the minimal number of 2-cells in Dδ over all disk diagrams δ for γ. The Dehn function
of G is the function N → N given by:

n 7→ max{ area(γ) : γ is a simple loop in X̃ with ℓ(γ) ≤ n }.

We say G has a linear (quadratic, exponential resp.) Dehn function if its Dehn function is
bounded above and below by linear (quadratic, exponential resp.) functions. The group G
has a linear Dehn function if and only if it is hyperbolic [ABC+91, Thm. 2.5, Prop. 2.10].
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Here is the main observation needed to complete our hyperbolization theorem: hy-
perbolicity and pullback stability for ϕ imply hyperbolicity of F∗ϕ; more generally, the
pullbacks of ϕ stabilize if and only if F∗ϕ has a linear or quadratic Dehn function. These
observations will follow from Bestvina–Feighn’s combination theorem and its relativization.

4.1 Bestvina–Feighn’s combination theorem

Our exposition on Bestvina–Feighn’s combination theorem has been simplified and special-
ized to the mapping torus setting. The reader will find the most general version in [BF92].

Let Γ be a marked graph and g : Γ → Γ a cellular map representing ϕ. The (topological)
mapping torusMg = Γ×[0, 1]/∼g of g is the quotient by the identification (p, 0) ∼g (g(p), 1)

for all p ∈ Γ; it has an induced marking π1(Mg) ∼= F∗ϕ. Consider the universal cover M̃g of

Mg, and equivariantly collapse the Γ̃-cross-sections to get the Bass–Serre tree Tϕ for F∗ϕ;
the F∗ϕ-action on Tϕ has exactly one orbit of vertices and edges. Recall that the ascending
HNN extension F∗ϕ has the relative presentation

F∗ϕ = ⟨F, t | txt−1 = Φ(x), ∀x ∈ F⟩;

the element t ∈ F∗ϕ from this presentation is known as the stable letter, and it acts freely
on Tϕ. Orient the axis in Tϕ for t so that t acts positively on it; the orientation equivariantly
extends to all edges of Tϕ to give the t-orientation on Tϕ (see Fig. 5, left). Every vertex of
Tϕ has exactly one incoming edge with respect to the t-orientation; when Φ is surjective,
Tϕ is a line. The tree Tϕ has a unique vertex/basepoint ⋆ with stabilizer F ≤ F∗ϕ; this
basepoint is on the axis for t. See [Ser77, §I.5.3] for another definition of Tϕ.

Figure 5: A Bass–Serre tree and two conjugacies of length 4: flaring unidirectional and non-
flaring strictly bidirectional. The class [xρ] is represented by some map S1× [−2, 2] →Mg.

For L ≥ 1, a path-element pair in the system (F, ϕ) of length 2L is a pair (ρ, xρ)
of an immersed edge-path ρ in Tϕ and an element xρ ∈ F∗ϕ that fixes ρ (pointwise).
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Elements x ∈ F∗ϕ act on path-element pairs by x · (ρ, xρ) = (x · ρ, xxρx−1). A conjugacy
[ρ, xρ] is a F∗ϕ-orbit of path-element pair (ρ, xρ). The conjugacy [ρ, xρ] is unidirectional
if ρ is monotone (with respect to the t-orientation on Tϕ); it is strictly bidirectional if ρ
decomposes into two monotone pieces of length L (see Fig. 5, center/right). When Φ is
surjective, all conjugacies in (F, ϕ) are unidirectional as Tϕ is a line.

Fix a conjugacy [ρ, xρ] in the system (F, ϕ) of length 2L. Let (vi)
L
i=−L be the consecutive

vertices of ρ. For −L ≤ i ≤ L, choose an element yi ∈ F∗ϕ such that vi = yi · ⋆.
Then xi = y−1

i xρyi ∈ F, and let ∥xi∥ be the Γ-length of the conjugacy class of xi in F.
The conjugacy [ρ, xρ] flares if 2 · ∥x0∥ ≤ max(∥x−L∥, ∥xL∥). The system (F, ϕ) has the
conjugacies flare property if, for some L ≥ 1, all conjugacies in (F, ϕ) of length 2L flare.

Example 4.1. Suppose F = Z and the endomorphism d̂ : Z → Z is multiplication by
d ̸= 0. We abuse notation and refer the outer class [d̂] as d̂ too (since Z is abelian and the
outer class is a singleton). Note that Z∗d̂ = BS(1, d). Let s ∈ BS(1, d) be the stable letter
and Td̂ the Bass–Serre tree for BS(1, d) with basepoint ⋆ ∈ Td̂. To describe a conjugacy

in the system (Z, d̂) of length 2L, it is enough to give an immersed edge-path ρ in Td̂ of
length 2L with middle vertex v0 = ⋆ and an element n0 ∈ Z that fixes ρ.

The following determines a unidirectional conjugacy in (Z, d̂) of length 4: let ρ be the
monotone edge-path with vertices vi = si·⋆ for −2 ≤ i ≤ 2 and n0 = 3d2 . As sns−1 = nd in
BS(1, d) for all n ∈ Z, we have n−2 = 3d4, n−1 = 3d3, n0 = 3d2, n1 = 3d, and n2 = 3; this
conjugacy flares if and only if |d| ≥ 2: ∥n−2∥ = 3d4 = d2 · ∥n0∥. In fact, all unidirectional
conjugacies in (Z, d̂) flare if and only if |d| ≥ 2 since d̂ is represented by an immersion on
a rose with one petal that sends the petal to an edge-path of length |d|; moreover, when
|d| ≥ 2, the unidirectional conjugacies have a unique direction of flaring: the reversal of
the direction induced by the s-orientation (see Fig. 5, center).

Now suppose |d| ≥ 2. The following determines a strictly bidirectional conjugacy in
(Z, d̂) of length 4: let ρ′ be the edge-path with vertices v′0 = ⋆, v′i = si · ⋆, and v′−i = 1 · v′i
for 0 ≤ i ≤ 2 and n′0 = 3d2 . Then n′±1 = 3d and n′±2 = 3. This conjugacy does not

flare, but its monotone pieces are conjugacies in (Z, d̂) of length 2 that flare (see Fig. 5,
right). This generalizes to a family of nonflaring strictly bidirectional conjugacies in (Z, d̂)
of length 2L for all L ≥ 1; therefore, the system (Z, d̂) does not have the conjugacies flare
property!

The system (F, ϕ) has the unidirectional conjugacies flare property if, for some L ≥ 1,
all unidirectional conjugacies in (F, ϕ) of length 2L flare. Let [ρ, xρ] be a unidirectional
conjugacy in (F, ϕ) of length 2L, and consider the edge-path ρ with the t-orientation. The
conjugacy classes (in F) of the corresponding elements xi ∈ F satisfy [Φ(xi)] = [xi−1] for
−L < i ≤ L. By unpacking the definitions of hyperbolicity and unidirectional conjugacy
flaring, the reader should deduce that they are equivalent.

Exercise 4.2. The outer endomorphism ϕ is hyperbolic if and only if the system (F, ϕ)
has the unidirectional conjugacies flare property.
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Similarly, unpacking the definition of strictly bidirectional conjugacies in (F, ϕ) of
length 2L gives a correspondence between them and elements of ÔL, i.e. the double cosets
ΦL(F)xΦL(F) (in F) such that x /∈ F and ΦL(F) ∩ xΦL(F)x−1 is not trivial.

Exercise 4.3 (cf. [Mut21, Lem. 5.2.3]). The pullbacks of the outer endomorphism ϕ sta-
bilize if and only if there is a constant L ≥ 1 such that all strictly bidirectional conjugacies
in the system (F, ϕ) have length at most 2L.

Proposition 4.1. The outer endomorphism ϕ is hyperbolic and its pullbacks stabilize if
and only if the system (F, ϕ) has the conjugacies flare property.

Sketch of proof. Any conjugacy is a concatenation of a unidirectional conjugacy with a
strictly bidirectional conjugacy. Hyperbolicity of ϕ is equivalent to the flaring of unidirec-
tional conjugacies (Exercise 4.2). Pullback stability for ϕ is equivalent to a uniform bound
on the length of strictly bidirectional conjugacies (Exercise 4.3). Together, they imply
conjugacies flare in (F, ϕ) — sufficiently long conjugacies will be almost unidirectional and,
hence, will flare: see the second paragraph of the proof of Proposition 4.4 below.

Conversely, if the pullbacks of ϕ do not stabilize, then, by the proof of Proposition 3.1,
there are integers m, d± ≥ 2 and a strictly birectional conjugacy ([ρ], [xρ]) with length

2r ≫ 2m such that [Φm(x±r)] = [x
d±
±r] in F. In particular, the monotone pieces of the

conjugacy are two flaring unidirectional conjugacies joined at the flaring end; this strictly
bidirectional conjugacy does not flare (see Fig. 5, right)! As r ≫ m is arbitrary, the system
(F, ϕ) does not have the conjugacies flare property.

Theorem 4.2 (combination [BF92]). If the system (F, ϕ) has the conjugacies flare prop-
erty, then the mapping torus F∗ϕ is hyperbolic.

Technically, Bestvina–Feighn assume “annuli flare” rather than conjugacies flare. The
annuli flare property is more difficult to define, yet not more enlightening. We refer the
interested reader to the proofs of [Mut21, Lem. 5.2.3-5.2.4, Thm. 5.3.7] for an idea on how
to upgrade conjugacy flaring to annuli flaring (via Proposition 4.1). Alternatively, the
next subsection has another proof of the next theorem’s main implication (3⇒1) that is
independent of Propositions 2.6 and 4.1. We are now ready to prove hyperbolization:

Theorem 4.3 (cf. [Mut21, Thm. 5.2.7]). The following are equivalent:

1. the mapping torus F∗ϕ is hyperbolic;

2. F∗ϕ has no BS(1, d)-subgroup for all d ≥ 1;

3. for all n, d ≥ 1 and nontrivial x ∈ F, the elements Φn(x), xd are not conjugate in F;
and

4. the outer endomorphism ϕ is hyperbolic and its pullbacks stabilize.
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Proof. The implications (1 ⇒ 2 ⇒ 3) follow from the standard Exercises 4.4 and 4.5;
(3 ⇒ 4) is Propositions 2.6 and 3.1; and (4 ⇒ 1) is Proposition 4.1 and Theorem 4.2.

Exercise 4.4. Hyperbolic groups have no BS(1, d)-subgroups for all d ≥ 1.

Hint. Z-subgroups of hyperbolic groups are undistorted [ABC+91, Prop. 3.2]; show that
this rules out BS(1, d) for d ≥ 2. Centralizers of Z-subgroups in hyperbolic groups are
virtually-Z [ABC+91, Prop. 3.5]; this rules out BS(1, 1).

Exercise 4.5. If Φn(x) = g−1xdg in F for some n, d ≥ 1, element g ∈ F, and nontrivial
x ∈ F, then the subgroup ⟨x, gtn⟩ ≤ F∗ϕ is naturally isomorphic to BS(1, d).

Hint. First show that there is a natural homomorphismBS(1, d) → F∗ϕ onto ⟨x, gtn⟩. Then
use the normal forms of elements in BS(1, d) and F∗ϕ to prove that this homomorphism
is injective; normal forms are called “reduced words” in [Ser77, §I.5].

Example 4.6. Suppose F = ⟨a, b⟩ and Ψ: F → F maps a 7→ ab and b 7→ ba. An expansion
represents the outer class ψ = [Ψ] (Example 2.4), and ψ is hyperbolic (Exercise 2.9). Since
the pullbacks of ψ stabilize (Exercise 3.3), the mapping torus

F∗ψ = ⟨a, b, t|tat−1 = ab, tbt−1 = ba⟩

is hyperbolic (Theorem 4.3:4⇒1); this mapping torus is also known as Sapir’s group.

4.2 Mj–Reeves’ relative combination theorem

Beyond hyperbolicity, we can still study the Dehn function of F∗ϕ. To this end, we will
sketch a relative version of Theorem 4.3 when Φ is not surjective — this is a new result!

Suppose g : (Γ, G) → (Γ, G) is the canonical relative expansion for ϕ. As g is a relative
expansion, the outer endomorphism ϕ is positively hyperbolic rel. G: there is a constant

L ≥ 1 such that 2 · ∥x∥G ≤ ∥ΦL(x)∥G for all x ∈ F, where ∥x∥G is the relative length of
the immersed (or constant) loop in Γ representing [x].

The free splitting (Γ, G) lets us represent the sequence ([xi])
L
i=−L for a conjugacy in

(F, ϕ) as a sequence (σi)
L
i=−L of immersed loops in Γ. A conjugacy in (F, ϕ) flares rel. G

if 2 · ∥σ0∥G ≤ max(∥σ−L∥G, ∥σL∥G). The system (F, ϕ) has the conjugacies flare rel. G
property if, for some L ≥ 1, all conjugacies in (F, ϕ) of length 2L flare rel. G.

Proposition 4.4. Suppose the endomorphism Φ is not surjective, and g : (Γ, G) → (Γ, G)
is the canonical relative expansion for its outer class ϕ. The system (F, ϕ) has the conju-
gacies flare rel. G property if and only if the pullbacks of ϕ stabilize.

Proof. Since the outer endomorphism ϕ is positively hyperbolic rel. G, the system (F, ϕ) has
the unidirectional conjugacies flare rel. G property with a unique direction for flaring given
by the reversal of the t-orientation; therefore, a long strictly bidirectional conjugacy is two
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flaring unidirectional conjugacies joined at the flaring ends (see Fig. 5, right). This means
long strictly bidirectional conjugacies cannot flare. So the conjugacy flare rel. G property
for (F, ϕ) implies a uniform bound on the length of strictly bidirectional conjugacies. In
light of Exercise 4.3, it remains to show the converse holds too: a uniform bound on the
length of strictly bidirectional conjugacies implies (F, ϕ) has the conjugacies flare rel. G
property.

Suppose all strictly bidirectional conjugacies in (F, ϕ) have length at most 2L0, the
outer endomorphism ϕ has L1 ≥ 1 as its length of positive hyperbolicity rel. G, and
the relative expansion g is K-Lipschitz (K ≥ 1). For n ≥ 1, a conjugacy [ρ, xρ] in
(F, ϕ) of length 2nL0L1 is a concatenation of monotone pieces, one of length M ≤ L0.
Up to an orientation of ρ, we have [ΦnL0L1(x0)] = [Φ2M (x−nL0L1)] (see Fig. 6). Since

Figure 6: A conjugacy in (F, ϕ) of length 2nL0L1 whose strictly bidirectional part has
length 2M ≤ 2L0.

∥ΦnL0L1(x0)∥G ≥ 2nL0∥x0∥G and ∥Φ2M (x−nL0L1)∥G ≤ K2M∥x−nL0L1∥G, we get

∥x−nL0L1∥G ≥ 2nL0

K2M
∥x0∥G ≥ 2nL0

K2L0
∥x0∥G,

and the conjugacy flares as long as 2nL0 ≥ K2L0 — this can be arranged by choosing n≫ 1.
In other words, the system (F, ϕ) has the conjugacies flare rel. G property.

Let the expansion ĝ : Γ̂ → Γ̂ be the Φ-equivariant “lift” of g to the relative universal
cover of (Γ, G) — Φ-equivariant means ĝ(x · p) = Φ(x) · ĝ(p) for all x ∈ F and p ∈ Γ̂.

The G-relative (universal) cover M̂g of Mg is constructed by equivariantly collapsing the

G̃-cross-sections in the universal cover M̃g of Mg; moreover, equivariantly collapsing the

Γ̂-cross-sections in M̂g produces the Bass–Serre tree Tϕ. For each vertex v ∈ Tϕ, denote

the corresponding Γ̂-cross-section in M̂g by Γ̂v. For each half-open edge (v, w] ⊂ Tϕ (with

the t-orientation), its preimage in M̂g is homeomorphic to the product Γ̂w × (v, w], and

the preimage’s attaching map to Γ̂v is the expansion ĝwv : Γ̂w ∼= Γ̂w × {v} → Γ̂v, which is
identified with some lift Γ̂ → Γ̂ of g under the identifications Γ̂w ∼= Γ̂ ∼= Γ̂v.

For L ≥ 1, a hallway in the G-relative cover M̂g of length 2L is a pair (ρ, (ρi)
L
i=−L),

where ρ = (vi)
L
i=−L is an immersed edge-path in Tϕ of length 2L and ρi is an immersed
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edge-path in Γ̂vi ⊂ M̂g for −L ≤ i ≤ L. The hallway is unidirectional if ρ is monotone
(with respect to the t-orientation on Tϕ); it is strictly bidirectional if ρ decomposes into
two monotone pieces of length L.

The girth of a hallway (ρ, (ρi)
L
i=−L) is the combinatorial length |ρ0| of the edge-path ρ0.

The hallway flares if 2 · |ρ0| ≤ max(|ρ−L|, |ρL|). The hallway is r-thin (r ≥ 0) if the
combinatorial distance between the initial (terminal resp.) vertices of ρi and ĝj,i(ρj) is at
most r whenever |i − j| = 1 and (vi, vj) is the t-orientation between the vertices — here,

ĝj,i : Γ̂vj → Γ̂vi are the maps governing the attaching in M̂g. The hallway is G̃-bounded if it
is 0-thin and the initial and terminal vertices of ρi correspond to lifts of G for −L ≤ i ≤ L.

Example 4.7. Suppose F = ⟨a, b⟩ and Φ: F → F maps a 7→ a−1 and b 7→ bab−1. The rela-
tive expansion h : (B,G) → (B,G) given in Example 2.8 is the canonical relative expansion
for the outer class ϕ = [Φ]. Let u ∈ B be the vertex of the marked graph fixed by h. Since
h induces Φ on π1(B, u) ∼= F, the Φ-equivariant lift h̃ : B̃ → B̃ to the universal cover will
fix a lift ũ of u. Choose the (oriented) lifts ℓ̃, m̃r̃ that start at ũ of the edge-paths ℓ,mr
respectively; so h̃(m̃) = m̃r̃(b · m̃) (see Fig. 7). The relative universal cover B̂ of (B,G)
has only one orbit of edges, and m̂ is the image of m̃ under the equivariant collapse map
B̃ → B̂. Let ĥ : B̂ → B̂ be the induced Φ-equivariant expansion; so ĥ(m̂) = m̂(b · m̂).

We now give a unidirectional hallway in the G-relative cover M̂h of length 2. Let ρ
be the immersed path with the vertices: v−1 = t−1 · ⋆, v0 = ⋆, and v1 = b−1t · ⋆, where
⋆ ∈ Tϕ is the basepoint. Via B̂vi

∼= B̂, we identify ĥ0,−1 : B̂v0 → B̂v−1 with ĥ : B̂ → B̂ and

ĥ1,0 : B̂v1 → B̂v0 with b−1 · ĥ : B̂ → B̂; similarly, we identify the immersed paths in B̂vi with

immersed paths in B̂. Any three immersed paths (ρi)
1
i=−1 in B̂ will determine a hallway

in M̂h. Let the first path be ρ1 = b · m̂, the second ρ0 = Φ(b) · (m̂(b · m̂)), and the third
ρ−1 = Φ2(b) · (m̂(b · m̂)(Φ(b)b · m̂)m̂). The hallway (ρ, (ρi)

1
i=−1) flares and is G̃-bounded.

The G-relative cover M̂g has the G̃-bounded hallways strictly flare property if, for some

L ≥ 1, all G̃-bounded hallways in M̂g of length 2L flare. The G-relative cover M̂g has the
hallways flare property if there are L ≥ 1 and H : R≥0 → R≥0 such that, for all r ≥ 0, an

r-thin hallway in M̂g of length 2L flares if its girth is at least H(r).
To state Mj–Reeves’ combination theorem, we introduce a peripheral structure on F∗ϕ.

A ϕ-peripheral free-by-cyclic subgroup of F∗ϕ is a subgroup corresponding to a component
of the mapping torus of the peripheral restriction g|G.

Theorem 4.5 (relative combination [MR08, Thm. 4.5]). Suppose the endomorphism Φ is
not surjective, g : (Γ, G) → (Γ, G) is the canonical relative expansion for its outer class ϕ,
and ĝ : Γ̂ → Γ̂ is the Φ-equivariant lift of g to the relative universal cover of (Γ, G). If the

G-relative cover M̂g has the hallways flare and G̃-bounded hallways strictly flare properties,
then the mapping torus F∗ϕ is (strongly) hyperbolic relative to the family of ϕ-peripheral
free-by-cyclic subgroups.
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Figure 7: The universal cover B̃ and the relative universal cover B̂.

Besides generalizing hyperbolicity, the definition of relative hyperbolicity [Far98, Bow12]
is not needed; we only need the fact that the Dehn function of a relatively hyperbolic group
is the Dehn function of its peripheral subgroups [Far98, Thm. 3.8]. The following will allow
us to apply Mj–Reeves’ relative combination theorem.

Proposition 4.6. Suppose the endomorphism Φ is not surjective, g : (Γ, G) → (Γ, G) is
the canonical relative expansion for ϕ, and ĝ : Γ̂ → Γ̂ is the Φ-equivariant lift of g to the
relative universal cover of (Γ, G). If the system (F, ϕ) has the conjugacies flare rel. G

property, then the G-relative cover M̂g has the hallways flare and G̃-bounded hallways
strictly flare properties.

The reader should fill in the details of the following proof as the final exercise

Sketch of proof. Let (ρ, (ρi)
L
i=−L) be a G̃-bounded hallway in M̂g. Each ρi concatenates

with a translate of itself to form a fundamental domain of an axis of some element xi ∈ F.
Thus, it determines a conjugacy in (F, ϕ) that flares (rel. G) if and only if the original
G̃-bounded hallway flares; therefore, the conjugacies flare rel. G property for the system
(F, ϕ) implies the G̃-bounded hallways strictly flare property for the G-relative cover M̂g.

For the hallways flare property, we first argue that strictly bidirectional r-thin hallways
with large enough (with respect to r) girth have uniformly bounded (independent of r)
length. If |ρ0| is large enough, then ĝ−1,0(ρ−1), ρ0, ĝ1,0(ρ1) coincide (modulo initial/terminal
segments of length at most r). Thus the unreduced pullback of (g, g) contains a long enough
(rel. G) immersed path that is not in the diagonal; since the unreduced pullback is fixed,
it contains an immersed loop not in the diagonal. This determines a strictly bidirectional
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conjugacy in (F, ϕ) of length 2. The same argument shows that if |ρ0| is large enough, then
some strictly bidirectional conjugacy in (F, ϕ) has the same length as the initial strictly
bidirectional hallway; the conjugacy has a uniformly bounded length by conjugacy flaring.

The previous paragraph implies that sufficiently long r-thin hallways with large enough
girth are almost unidirectional. As g is a relative expansion, one can verify the hallways
flare property, starting with unidirectional hallways. A variation of this argument for annuli
appears in [Mut21, Thm. 5.3.7].

We can now prove relative hyperbolization:

Theorem 4.7. If the endomorphism Φ is not surjective, then the following are equivalent:

1. the mapping torus F∗ϕ is hyperbolic relative to the family of ϕ-peripheral free-by-cyclic
subgroups;

2. F∗ϕ has linear or quadratic Dehn function;

3. F∗ϕ has no BS(1, d)-subgroup for all d ≥ 2;

4. for all n, d ≥ 2 and nontrivial x ∈ F, the elements Φn(x), xd are not conjugate in F;
and

5. the pullbacks of the outer endomorphism ϕ stabilize.

Proof. The implication (3 ⇒ 4) follows from Exercise 4.5; (4 ⇒ 5) is Proposition 3.1; and
(5 ⇒ 1) is Propositions 4.4 and 4.6, and Theorem 4.5.

(1 ⇒ 2): as free-by-cyclic groups have linear or quadratic Dehn functions [BG10], so
does F∗ϕ [Far98, Thm. 3.8]. (2 ⇒ 3): if F∗ϕ contains BS(1, d) for some d ≥ 2, then it has
an exponential Dehn function [Kap00, Cor. 5.7].

Corollary 4.8. The group F∗ϕ has a linear, quadratic, or exponential Dehn function.

Second proof of Theorem 4.3: 3⇒1. By Theorem 1.3(3⇒1), assume Φ is not surjective. By
Theorem 4.7(4⇒1), F∗ϕ is hyperbolic relative to the family of ϕ-peripheral free-by-cyclic
subgroups. These free-by-cyclic subgroups are hyperbolic by Theorem 1.3(3⇒1); therefore,
F∗ϕ is hyperbolic [Far98, Thm. 3.8].

Example 4.8. Suppose F = ⟨a, b⟩ and Φ: F → F maps a 7→ a−1 and b 7→ bab−1. The rela-
tive expansion h : (B,G) → (B,G) given in Example 2.8 is the canonical relative expansion
for the outer class ϕ = [Φ]. The ϕ-peripheral free-by-cyclic subgroup is the Klein bottle
group BS(1,−1). Since the pullbacks of ϕ stabilize (Exercise 3.3), the mapping torus

F∗ψ = ⟨a, b, t|tat−1 = a−1, tbt−1 = bab−1⟩

is hyperbolic relative to the ϕ-peripheral Klein bottle subgroup ⟨a, t⟩ (Theorem 4.7:5⇒1).
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